BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
22 July 2020 Morphodynamic Responses to the Hong Kong–Zhuhai–Macao Bridge in the Pearl River Estuary, China
Mengguo Li, Wendan Li, Mingxiao Xie, Ting Xu
Author Affiliations +
Abstract

Li, M.; Li, W.; Xie, M., and Xu, T., 2021. Morphodynamic responses to the Hong Kong–Zhuhai–Macao Bridge in the Pearl River estuary, China. Journal of Coastal Research, 37(1), 168–178. Coconut Creek (Florida), ISSN 0749-0208.

Human activities such as constructing large bridges, performing land reclamation, and creating harbors in complex tidal estuaries can result in severe and undesirable morphodynamic responses. This study investigates morphodynamic responses to the construction of the Hong Kong–Zhuhai–Macao Bridge (HZMB) in Lingdingyang Bay of the Pearl River estuary (LBPRE). The LBPRE in China is an important estuary with unique geomorphic features, complex hydrodynamic sediment conditions, dense shipping routes, high ship density, and a high navigation grade. The HZMB, a major sea-crossing transportation project consisting of bridges, a tunnel, and man-made islands, is being designed to cross the LBPRE. The morphodynamic responses resulting from the HZMB are likely to be significant. Therefore, it is necessary to carry out studies to optimize the HZMB design to minimize its impacts on hydrodynamics, sediment environment, harbors, and navigational channels as much as possible. In this article, the natural hydrodynamic and sediment conditions are first analyzed on the basis of in situ data. Next, a numerical model of tidal current, sediment movement, and seabed deformation based on TK-2D software is set up with an irregular triangular grid. The model is calibrated with in situ data, and the results show that the calculated tidal levels, tidal currents, suspended load concentrations, and seabed deformations are all in good agreement with field data. The model is then applied to carry out high-resolution simulations for design optimization of the HZMB from the perspective of its impacts on morphodynamics and hydrodynamics, as well as on harbors and channels. The study shows that the proposed HZMB design is feasible in terms of the morphodynamic responses. The conclusions provide an important foundation for the construction of the HZMB project.

©Coastal Education and Research Foundation, Inc. 2021
Mengguo Li, Wendan Li, Mingxiao Xie, and Ting Xu "Morphodynamic Responses to the Hong Kong–Zhuhai–Macao Bridge in the Pearl River Estuary, China," Journal of Coastal Research 37(1), 168-178, (22 July 2020). https://doi.org/10.2112/JCOASTRES-D-19-00173.1
Received: 18 November 2019; Accepted: 23 March 2020; Published: 22 July 2020
KEYWORDS
Lingdingyang Bay
numerical model
sediment
tidal current
TK-2D software
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top