How to translate text using browser tools
1 October 2014 Laboratory Colonization of the Blow Flies, Chrysomya Megacephala (Diptera: Calliphoridae) and Chrysomya rufifacies (Diptera: Calliphoridae)
Sonja Lise Swiger, Jerome A. Hogsette, Jerry F. Butler
Author Affiliations +

Chrysomya megacephala (F.) and Chrysomya rufifacies (Macquart) were colonized so that larval growth rates could be compared. Colonies were also established to provide insight into the protein needs of adult C. rufifacies and developmental rates of the ensuing larvae. The C. megacephala and C. rufifacies laboratory colonies were reared for five and six generations, respectively, at 28°C. C. megacephala developmental mean rate from egg to adult was 20.4 ± 0.38 d. First-instar larvae emerge in 1.4 ± 0.24 d, second-instar larvae develop in 2.6 ± 0.38 d and third instars occur at 6.3 ± 0.72 d. Development from egg to pupation occurred in 12 ± 1.10 d. C. rufifacies developed at a mean rate of 16.2 ± 0.78 d from egg to adult emergence. Each stage occurred in succession from first-instar larvae 1.1 ± 0.25 d, second-instar larvae developed 2.3 ± 0.25 d later, and the third-instar larvae developed 5.7 ± 0.41 d later. The larvae pupated 10.0 ± 0.57 d after oviposition. Both of these flies can be collected in the wild and easily colonized using conditioned chicken as an oviposition and larval medium. C. megacephaïa apparently prefers a lower development and maintenance temperature than C. rufifacies, as evidenced by the high pupal mortality. Laboratory-reared C. rufifacies benefited from bloodmeal as a protein supplement to enhance egg production. C. rufifacies larvae were not observed preying on each other and additional larval species were not provided to serve as prey.

© 2014 Entomological Society of America
Sonja Lise Swiger, Jerome A. Hogsette, and Jerry F. Butler "Laboratory Colonization of the Blow Flies, Chrysomya Megacephala (Diptera: Calliphoridae) and Chrysomya rufifacies (Diptera: Calliphoridae)," Journal of Economic Entomology 107(5), 1780-1784, (1 October 2014).
Received: 7 April 2014; Accepted: 1 August 2014; Published: 1 October 2014

This article is only available to subscribers.
It is not available for individual sale.

chicken thigh
forensic entomology
protein source
Get copyright permission
Back to Top