How to translate text using browser tools
27 June 2021 Modeling Rangeland Grasshopper (Orthoptera: Acrididae) Population Density Using a Landscape-Level Predictive Mapping Approach
Erica Kistner-Thomas, Sunil Kumar, Larry Jech, Derek A. Woller
Author Affiliations +
Abstract

Since the mid-19th century, grasshoppers have posed a substantial threat to North American rangelands as well as adjacent croplands and have the potential to cost the economy millions of dollars in annual damages. The United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) have gone to great lengths to ensure that rangeland grasshopper populations remain below an economic impact threshold across the western United States. However, current grasshopper forecasting efforts by the USDA are based solely on the previous year's grasshopper density and do not take region-specific environmental factors (e.g., climate and topography) into account.To better understand the effects of climate and landscape heterogeneity on rangeland grasshopper populations, we assessed the relationship between grasshopper density survey data from across 56 sites between 2007 and 2017 for four counties in north central Wyoming with 72 biologically relevant geographic information system (GIS)-based environmental variables. A regression model was developed to predict mean adult grasshopper density from 2012 to 2016, which was then used to forecast grasshopper density in 2017. The best-fit predictive model selected using Akaike's Information Criterion (AICc) explained 34.5% of the variation in mean grasshopper density from 2012 to 2016. October precipitation and past mean grasshopper density from 2007 to 2011 were among the best predictors of mean grasshopper density in 2012–2016. Our results also suggest that rangelands in central Sheridan County, southwest Johnson County, and southeast Washakie County are more prone to grasshopper outbreaks. Most importantly, this study demonstrated that both biotic and abiotic environmental variables influence grasshopper density and should be considered in future forecasting efforts.

Published by Oxford University Press on behalf of Entomological Society of America 2021. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Erica Kistner-Thomas, Sunil Kumar, Larry Jech, and Derek A. Woller "Modeling Rangeland Grasshopper (Orthoptera: Acrididae) Population Density Using a Landscape-Level Predictive Mapping Approach," Journal of Economic Entomology 114(4), 1557-1567, (27 June 2021). https://doi.org/10.1093/jee/toab119
Received: 26 January 2021; Accepted: 24 May 2021; Published: 27 June 2021
JOURNAL ARTICLE
11 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Climate
forecast model
grasshopper
outbreak
rangeland
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top