Xylosandrus compactus (Eichhoff) (Coleoptera: Curculionidae, Scolytinae) is a worldwide invasive species that causes huge economic loss and environmental damage in many countries. Traditional morphological characteristics make it hard to identify scolytines due to their tiny size. Besides, the intercepted insect samples are incomplete, and the limitation of insect (larvae and pupae) morphology makes morphological identification more difficult. The majority of the damage is caused by adults and fungi that serve as nutrition for their larvae. They destroy plant trunks, branches, and twigs, affecting plant transport tissues in both weak and healthy plants. An accurate, efficient, and economical molecular identification technique for X. compactus not restricted by professional taxonomic knowledge is necessary. In the present study, a molecular identification tool based on the mitochondrial DNA gene, cytochrome C oxidase subunit I (COI) was developed. A species-specific COI (SS-COI) PCR assay was designed to identify X. compactus regardless of the developmental stage. Twelve scolytines commonly found in eastern China, namely Xylosandrus compactus, X. crassiusculus, X. discolor, X. germanus, X. borealis, X. amputates, X. eupatorii, X. mancus, Xyleborinus saxesenii, Euwallacea interjectus, E. fornicatus, and Acanthotomicus suncei, were included in the study. Additionally, specimens of X. compactus from 17 different areas in China, as well as a specimen collected from the United Stated, were also analyzed. Results demonstrated the accuracy and high efficiency of the assay, regardless of the developmental stage or the type of specimen. These features provide a good application prospect for fundamental departments and can be used to prevent the harmful consequences of the spread of X. compactus.
How to translate text using browser tools
27 June 2023
An accurate, efficient, and economical identification technology for black twig borer based on species-specific cytochrome C oxidase subunit I PCR assay
Xueting Sun,
Guangliang Lu,
Ronghua Sun,
You Li,
Shiwei Sun,
Lei Gao
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Journal of Economic Entomology
Vol. 116 • No. 4
August 2023
Vol. 116 • No. 4
August 2023
ambrosia beetle
invasive species
mitochondrial DNA
Molecular tool
rapid