Heat stress elicits the expression of various antistress proteins (e.g., heat shock proteins [HSPs] and antioxidase enzymes) in honeybees (Hymenoptera: Apidae), which are important in protecting cells from heat-induced stresses. In this study, we used real-time quantitative reverse transcription–polymerase chain reaction to analyze the expression patterns of the heat shock protein 90 (Hsp90), heat shock protein 70Ab (Hsp70Ab), peroxidase (Pod), and cytochrome P450 (Cyp450) in response of Apis cerana cerana F. to different temperatures and different heat exposure times. We observed that, with the increase of temperature and exposure time, the expression of the four genes also increased, thus confirming that heat stress can activate heat-resistant mechanisms of A. cerana cerana and that temperature and exposure time are key factors affecting the accumulation of HSPs. Our results provide information on the expression patterns of four genes during heat stress to serve as a basis for determining the mechanisms by which A. cerana cerana adapts to thermal stress.
Translator Disclaimer
ACCESS THE FULL ARTICLE
antioxidase
Apis cerana cerana
heat shock protein
thermal stress