How to translate text using browser tools
26 October 2015 A Dynamic Population Model to Investigate Effects of Climate and Climate-Independent Factors on the Lifecycle of Amblyomma americanum (Acari: Ixodidae)
Antoinette Ludwig, Howard S. Ginsberg, Graham J. Hickling, Nicholas H. Ogden
Author Affiliations +
Abstract

The lone star tick, Amblyomma americanum, is a disease vector of significance for human and animal health throughout much of the eastern United States. To model the potential effects of climate change on this tick, a better understanding is needed of the relative roles of temperature-dependent and temperature-independent (day-length-dependent behavioral or morphogenetic diapause) processes acting on the tick lifecycle. In this study, we explored the roles of these processes by simulating seasonal activity patterns using models with sitespecific temperature and day-length-dependent processes. We first modeled the transitions from engorged larvae to feeding nymphs, engorged nymphs to feeding adults, and engorged adult females to feeding larvae. The simulated seasonal patterns were compared against field observations at three locations in United States. Simulations suggested that 1) during the larva-to-nymph transition, some larvae undergo no diapause while others undergo morphogenetic diapause of engorged larvae; 2) molted adults undergo behavioral diapause during the transition from nymph-to-adult; and 3) there is no diapause during the adult-to-larva transition. A model constructed to simulate the full lifecycle of A. americanum successfully predicted observed tick activity at the three U.S. study locations. Some differences between observed and simulated seasonality patterns were observed, however, identifying the need for research to refine some model parameters. In simulations run using temperature data for Montreal, deterministic die-out of A. americanum populations did not occur, suggesting the possibility that current climate in parts of southern Canada is suitable for survival and reproduction of this tick.

© Crown copyright 2015.
Antoinette Ludwig, Howard S. Ginsberg, Graham J. Hickling, and Nicholas H. Ogden "A Dynamic Population Model to Investigate Effects of Climate and Climate-Independent Factors on the Lifecycle of Amblyomma americanum (Acari: Ixodidae)," Journal of Medical Entomology 53(1), 99-115, (26 October 2015). https://doi.org/10.1093/jme/tjv150
Received: 17 April 2015; Accepted: 14 September 2015; Published: 26 October 2015
JOURNAL ARTICLE
17 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
Amblyomma americanum
climate change
lone star tick
modelling
tick-borne disease
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top