Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
John-Paul Zonneveld, Nabilah Adani, Aswan, Jonathan I. Bloch, Antonino Briguglio, Russell L. Ciochon, Laura J. Cotton, Agus T. Hascaryo, Jason Head, Javier Luque, Yan Rizal, Nadia Santodomingo, Thierry Smith, Jonathan Todd, Peter Wilf, Yahdi Zaim
The Eocene Pagat Member of the Tanjung Formation records the transition from marginal-marine to shallow-marine deposition on the southern coast of Indonesian Borneo. This unit contains a diverse tropical marine invertebrate assemblage that includes foraminifera, snails, bivalves, crabs, sea urchins, solitary corals, and bryozoans. These fossils occur in bioclast-rich limestone beds that were deposited in low-relief biostromes on a mud-dominated coast. A diverse trace-fossil assemblage indicates the occurrence of many other invertebrates, including sponges, worms, and other marine arthropods that were not preserved as body fossils. This diverse biota suggests that the Central Indo-Pacific marine biodiversity hotspot may have originated as early as the late Eocene (about 34 million years ago).
Marine sedimentary rocks of the late Eocene Pagat Member of the Tanjung Formation in the Asem Asem Basin near Satui, Kalimantan, provide an important geological archive for understanding the paleontological evolution of southern Kalimantan (Indonesian Borneo) in the interval leading up the development of the Central Indo-Pacific marine biodiversity hotspot. In this paper, we describe a moderately diverse assemblage of marine invertebrates within a sedimentological and stratigraphical context. In the studied section, the Pagat Member of the Tanjung Formation records an interval of overall marine transgression and chronicles a transition from the marginal marine and continental siliciclastic succession in the underlying Tambak Member to the carbonate platform succession in the overlying Berai Formation.
The lower part of the Pagat Member contains heterolithic interbedded siliciclastic sandstone and glauconitic shale, with thin bioclastic floatstone and bioclastic rudstone beds. This segues into a calcareous shale succession with common foraminiferal packstone/rudstone lenses interpreted as low-relief biostromes. A diverse trace fossil assemblage occurs primarily in a muddy/glauconitic sandstone, sandy mudstone, and bioclastic packstone/rudstone succession, constraining the depositional setting to a mid-ramp/mid to distal continental shelf setting below fair-weather wave base but above storm wave base.
Each biostrome rests upon a storm-generated ravinement surface characterized by a low-diversity Glossifungites or Trypanites trace fossil assemblage. The erosional surfaces were colonized by organisms that preferred stable substrates, including larger benthic foraminifera, solitary corals, oysters, and serpulid annelid worms.
The biostromes comprised islands of high marine biodiversity on the mud-dominated Pagat coastline. Together, the biostromes analyzed in this study contained 13 genera of symbiont-bearing larger benthic foraminifera, ∼40 mollusk taxa, at least 5 brachyuran decapod genera, and 6 coral genera (Anthemiphyllia, Balanophyllia, Caryophyllia, Cycloseris, Trachyphyllia, and Trochocyathus), as well as a variety of bryozoans, serpulids, echinoids, and asterozoans. High foraminiferal and molluscan diversity, coupled with modest coral diversity, supports the hypothesis that the origin of the diverse tropical invertebrate faunas that characterize the modern Indo-Australian region may have occurred in the latest Eocene/ earliest Oligocene.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere