Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The latest discovery of microfossils from the lower Cambrian (Fortunian Stage) Zhangjiagou Lagerstätte in South China are presented. This lagerstätte is rich in exceptionally preserved microfossils, including embryos of Olivooides multisulcatus, Olivooides mirabilis, and Pseudooides prima; hatched stages of O. multisulcatus, O. mirabilis, Hexaconularia sichuanensis, and Quadrapyrgites quadratacris; and cycloneuralians represented by Eopriapulites sphinx. The largest known fragment of O. mirabilis implies that its adult length can be more than 9.0mm with at least 50 annuli, and the longest known specimen of Q. quadratacris has at least 18 annuli. These unusually large specimens refute the non-feeding larvae hypothesis for Olivooides and Quadrapyrgites.
Based on the current material, it is inferred that (1) early cnidarians have a high diversity in the Fortunian Stage; (2) P. prima might represent the embryonic stages of H. sichuanensis; (3) adults of Olivooides and Quadrapyrgites may have reached centimeter-scale dimensions with more than 50 annuli; (4) Olivooides and Quadrapyrgites may be better interpreted as coronate scyphozoans; (5) cycloneuralians also had a high diversity in the Zhangjiagou Lagerstätte; and (6) cycloneuralians might have originally been part of the early Cambrian meiofauna rather than belonging to the macrobenthos. Such ancestral cycloneuralians might have been Eopriapulites-like, possessing pentaradially symmetric, backward pointing, and internally hollow introvert scalids used as locomotory devices.
The family Cardiliidae has been scarcely studied. It was historically placed in the superfamily Mactroidea. Members of this family are characterized by a cordiform shell with a typical mactrid hinge, posterior adductor muscle placed into a myophore and three ornamental areas on the external surface of the shell. Six extant and 14 exclusively fossil species have been previously mentioned in the literature as belonging to the genus Cardilia. The geographical distribution, stratigraphic range, type material and type locality of each extant and fossil species are provided. In this work, four extant species and 11 exclusively fossil species belonging to the genus Cardilia are recognized. Extant species are from the western Pacific Ocean, Indian Ocean and eastern Atlantic Ocean, while fossil taxa are recorded from deposits of middle Eocene to late Pliocene in Europe and Asia,. One of them is formally described herein as Cardilia edwardsi new species.
Four rare Pennsylvanian (Stark Shale: Pennsylvanian, Missourian [ =Kasimovian]) coleoids from Nebraska and Iowa, which are preserved as flattened partial phragmocones and body chambers associated with three-dimensionally fossilized ink sacs, are herein described as Pabianiconus starkensis new genus new species, Nebraskaconus whitei new genus new species, and Starkites compressus new genus new species. One specimen that is missing most of the phragmocone, is provisionally assigned to Donovaniconus. The fossils are assigned to the Coleoidea because of the presence of ink-filled sacs in the body chamber region of the conch. Additionally, eight fragmented and flattened phragmocones and body-chamber clusters with similar morphologies, including some with ink fragments and arm hooks, are assigned to the Coleoidea, but are not named because of their fragmentary condition. On most of the eight specimens, the shell material is associated with other unidentified finely macerated material, which suggests these fossils are probably either ejectoid masses or coprolites from coleoid predators and/or scavengers. However, the new genera named above appear to have been deposited as complete animals, based on the presence of the ink-filled sacs that are in the body chambers. With their body chamber and phragmocone morphologies, these rare coleoid taxa provide valuable information about conch variability within the Carboniferous evolutionary radiation of coleoids.
The limited record of the bactritoid-like coleoid cephalopods is here expanded due to discovery of a late Carboniferous (Moscovian) orthocone comprising a phragmocone and a body chamber with a proostracum-like structure, a sheath-like rostrum, an ink sac, and a muscular mantle preserved on top of the conch. The specimen comes from the Wewoka Formation in the vicinity of the city of Okmulgee, Oklahoma, which previously yielded an orthocone indicative of an evolutionary branch of the Carboniferous cephalopods described as the order Donovaniconida Doguzhaeva, Mapes, and Mutvei, 2007a within the subclass Coleoidea Bather, 1888. Here, we describe from that site a bactritoid-like coleoid, Oklaconus okmulgeensis n. gen. n. sp. in Oklaconidae n. fam. A broad lateral lobe of the suture line and a compressed conch with a narrowed dorsal side and a broadly rounded ventral side distinguish this genus from DonovaniconusDoguzhaeva, Mapes, and Mutvei, 2002b. The muscular mantle is preserved as a dense sheet-like structure, with a crisscross pattern and a globular-lamellar ultrastructure. Recent knowledge on the early to late Carboniferous coleoids is discussed. Carboniferous coleoids show a high morphological plasticity with a capacity for being altered to create the diverse combinations of ‘bactritoid’ and ‘coleoid’ structures. This could be the principle evolutionary driver of their radiation in the late Carboniferous.
The fossil record of the clawed lobster genus, Homarus, is appraised. The taxonomic history of Homarus and Hoploparia is summarized, and a list of species recognized for each is provided. A tabulation of all fossil species of the family Nephropidae permits assessment of nephropid species diversity through time. A new species of Homarus, H. hungaricus, is recorded from the upper Oligocene (Chattian) Mány Formation at Mány, northern Hungary. The species is known by a single specimen consisting of a partial cephalothorax, a pleon minus telson, and partial chelipeds. Homarus is now known by two extant species (H. americanus and H. gammarus) and six fossil taxa, one of Early Cretaceous (Albian; H. benedeni) and five of Cenozoic age (H. hungaricus n. sp., H. klebsi, H. lehmanni, H. morrisi, and H. percyi). The new fossil Homarus differs from modern congeners in aspects of carapace and pleon ornamentation and, especially, cutter claw shape. This is the fourth Oligocene occurrence of a nephropid species; all are Homarus and all are from Western Europe. Homarus makes its appearance in the fossil record in the Early Cretaceous (Albian) and then is not known again until the Paleogene, despite the fact that nephropid lobsters in general are well known from the Late Cretaceous. Nephropid lobsters are better known from the Cretaceous than from the Cenozoic. Both raw species numbers and numbers corrected (normalized) for epicontinental sea coverage show that shelf-dwelling nephropid lobsters were most diverse during the Late Cretaceous.
Fossils can inform the study of modern ecosystems by showing how species interactions in ancient communities compare with those today and how extinction is selective not only with respect to species but also with respect to entire modes of life. We studied the life habits and pattern of occurrence of the barnacle Chesaconcavus chesapeakensisZullo, 1992 on the shells of the gastropod Conradconfusus parilis (Conrad) and the bivalve Chesapecten santamaria (Tucker) from Chancellor's Point in the Windmill Point Member of the St. Mary's Formation (late Miocene, Tortonian) of Maryland. Using several criteria, we show that the barnacle occupied living hosts only. The 59% incidence of the barnacle on Conradconfusus parilis is high compared to known living associations between barnacles and gastropods. Although Conradconfusus parilis with and without barnacles do not differ in size, suggesting that the barnacle had little effect on this gastropod, there is some indication that Chesapecten santamaria with barnacles are somewhat smaller than those without and may therefore have been adversely affected by the presence of barnacles. On the basis of morphology and the low (15%) incidence of repaired scars, Conradconfusus parilis was a predator that did not use its shell lip to subdue prey. No ecological equivalents of Conradconfusus and Chesaconcavus have existed in the temperate northwestern Atlantic between Cape Cod and Cape Hatteras for the past three million years.
Evaniid wasps develop as solitary egg predators within the oothecae of cockroaches. Fossil evaniids are relatively common compared with most other parasitoid Hymenoptera, undoubtedly due to their searching for host cockroaches on tree trunks and thus an increased chance of being trapped in tree resin. The genus ParevaniaKieffer, 1907 is widely distributed through the Old World and is also known from a small number of rather unremarkable fossil taxa. Here we add to this extinct fauna Parevania oculiseparata Jennings, Krogmann, and Austin new species from Baltic Eocene amber, a species that has highly modified compound eyes that are unique among the Hymenoptera, and possibly among insects as a whole. Parevania oculiseparata n. sp. possesses a prominent acute ridge extending across the entire dorso-ventral elongation of the eye surface. Modifications to the regular curved surface of the eyes are extremely rare among Hymenoptera and previously were only known from two species of Inostemma Haliday, 1833 (Platygastridae s. s.) and the three known species of IsomeralaShipp, 1894 (Eucharitidae). In describing this unusual fossil evaniid species, we also analyze the optical consequences of the eye surface discontinuity, and discuss different types of compound eye modifications that occur in other Hymenoptera and other insects.
Betelgeusia brezinai new species (Radiasteridae, Paxillosida, Asteroidea) is described from diversely fossiliferous Upper Cretaceous methane seep deposits of South Dakota. Asteroids are rare at modern chemosynthetic settings, although a hydrothermal vent occurrence is known, and two possible fossil methane seep occurrences have been reported. The Radiasteridae is important to the interpretation of crown-group asteroid phylogeny. Two extant genera are assigned to the family: Radiaster is known from relatively few but geographically widely dispersed largely deeper-water settings, and Gephyreaster is uncommon over a range of depths in the North Pacific Ocean. Jurassic and Cretaceous radiasterids have been described from geographically widely separated localities. In morphological-based phylogenetic analyses, the Radiasteridae has been assigned to the order Paxillosida, and Gephyreaster is similarly placed in a molecular evaluation; Radiaster has not yet been treated in a molecular study. In molecular treatment, an approximately traditional Paxillosida is a sister taxon to a significant part of the traditional Valvatida. Comparative morphology of Mesozoic and extant asteroids enables a hypothesis for a stemward, Mesozoic paxillosidan.
The new conodont genus Magnigondolella is recognized based on specimens recovered from the Anisian (Middle Triassic) of British Columbia in Canada, and Nevada in the USA. This new genus encompasses problematic specimens with high carinas, which have recently been collectively referred to as Neogondolella ex gr. regalis Mosher. Ten species from North America are herein assigned to Magnigondolella n. gen., including the eight new species M. alexanderi, M. cyri, M. julii, M. nebuchadnezzari, M. salomae, M. n. sp. A, M. n. sp. B, and M. n. sp. C, as well as the two existing species M. regalis (Mosher) and M. dilacerata (Golding and Orchard). Other species from the Tethys region are also tentatively assigned to Magnigondolella n. gen. Based on published records, the genus appears to range from the Spathian to the upper Anisian in North America. The recognition of eight new species from the Anisian significantly increases the conodont biodiversity of this period, which has previously been regarded as a time of low diversity. Although some of the species included within Magnigondolella n. sp. have relatively long stratigraphic ranges, many have been identified in both British Columbia and Nevada, and therefore show potential for biostratigraphic correlation on a regional scale.
A new lonchidiid genus, Pristrisodus, from the Upper Triassic Tiki Formation of India is described based on multiple, well-preserved, isolated teeth. Comparative analysis resulted in synonymizing Parvodus tikiensis and Lissodus duffini, which are known from the same horizon and resulted in a new taxon, Pristrisodus tikiensis n. comb. These teeth are elongated with mesiodistal length greater than or equal to twice the labiolingual width and have a high principal cusp, lateral cusplets, a distinct ridge near the crown-root junction labially and higher up on the crown lingually, weak ornamentation, and linear depression along the crown-root junction. Five morphotypes based on overall shape, robustness and crown height are determined. The teeth show a gradual monognathic heterodonty. The anterolateral teeth (morphotypes I − II) have high, pyramidal principal cusp with two or three small but pointed cusplets, and triangular labial and lingual protuberance. The posterolateral teeth (morphotypes III − IV) have four incipient cusplets, relatively low principal cusp, bilobed/rounded, hanging labial and incipient lingual protuberances. Morphotype V comprises anterior teeth that are broad, triangular and robust, and have rounded/blunt principal cusp, one cusplet, and low, hanging labial peg. Multivariate analyses corroborate the qualitative assessment of the Indian hybodonts. Dental histology of Pristrisodus n. gen., shows that it is distinctly different from other lonchidiid genera. The assemblage of freshwater sharks, along with other vertebrate microfossils of the Tiki Formation, shows similarity with that of the lower Tecovas Formation of the Chinle Group, USA. The euryhaline nature resulted in the adaptation of the hybodonts to freshwater systems in India during the Carnian.
Most species of the genus PliosaurusOwen, 1842 come from the Northern Hemisphere, however, a growing number of new specimens are now available from the Southern Hemisphere. Here, a new species of Pliosaurus is described, the second for the genus from the Southern Hemisphere, collected from the upper Tithonian (Jurassic) levels of the Vaca Muerta Formation, Neuquén Province, Patagonia. Pliosaurus almanzaensis new species is characterized by two autapomophies: the angular participating in the mandibular symphysis and the occipital condyle without a notochordal pit or several, irregularly arranged grooves. Additionally, P. almanzaensis n. sp. can be differentiated from other Pliosaurus species by the following characters: trihedral teeth, nine or more symphyseal alveoli, 15–17 post-symphyseal alveoli, and the parasphenoid without a ventral keel. Pliosaurus almanzaensis n. sp. shows that Pliosaurus species with nine or more symphyseal alveoli persisted until the late Tithonian, contrary to previous assumptions that only species with six symphyseal alveoli were present.
A new juvenile specimen of Pteranodon from the Smoky Hill Chalk Member of the Niobrara Formation of western Kansas had an estimated wingspan in life of 1.76 m, ∼ 45% smaller than the smallest previously known specimens, but does not differ in morphology from larger specimens. Its presence indicates that juveniles were capable of flying long distances, so it falsifies the interpretation of Pteranodon as growing rapidly to adult size under parental care before flying. Instead juveniles were precocial, growing more slowly to adult size while flying and feeding independently for several years before going to sea. Because juveniles are otherwise unknown in the Smoky Hill Chalk Member, they must have occupied different environments and ecological niches than adults; thus Pteranodon exhibited ontogenetic niches. Evidence is presented that most other pterosaurs (e.g., Rhamphorhynchus, Pterodactylus, Anhanguera) also exhibited various ontogenetic niches, which, along with their large body size, suggests that pterosaur taxonomic diversity was rather low, like that of crocodilians.
Medusaceratops lokiiRyan, Russell, and Hartman, 2010 is an enigmatic taxon of ceratopsid represented by partial parietals from the Mansfield bonebed in the Campanian Judith River Formation, Montana. Originally, all ceratopsid material collected from this bonebed was referred to the centrosaurine ceratopsid Albertaceratops, but subsequently two parietals were designated the types of the chasmosaurine, M. lokii, in part, because they were interpreted to have three epiparietals bilaterally. Here we describe new material from the bonebed that allows a systematic revision of the taxon. A revised reconstruction of the frill, informed by newly discovered parietals, reveals that M. lokii had a broad midline ramus and at least five epiparietals (ep) around the margin of the frill, both traits that are characteristic of Centrosaurinae. From medial to lateral, the epiparietal ornamentation consists of a small, variably procurving epiparietal (ep 1), an anterolaterally curving pachyostotic hook (ep 2), a smaller pachyostoic process (ep 3), and two small triangular epiparietals (ep 4 and 5). A phylogenetic analysis of ceratopsids, which is the first to include Medusaceratops, indicates that M. lokii is a unique, early centrosaurine ceratopsid taxon that is more closely related to Centrosaurini and Pachyrhinosaurini than Nasutoceratopsini. No unequivocal chasmosaurine bones or diagnostic material from any other ceratopsid could be identified from the Mansfield bonebed, suggesting that it represents one of the oldest occurrences of a monodominant accumulation of a centrosaurine ceratopsid on record.
The Leptarctinae are an enigmatic subfamily of mustelids present in North America and Eurasia during the Miocene (Arikareean to Hemphillian North American Land Mammal Ages). Their diet and ecology have been particularly controversial. Some workers have suggested they were similar to koalas, whereas others suggested they were crushing omnivores analogous to raccoons. Leptarctus oregonensisStock, 1930, a poorly known leptarctine from the early Barstovian, is represented by fragmented cranial elements and isolated teeth from the Mascall Formation of Oregon, and some fairly complete but undescribed material from the Olcott Formation of western Nebraska. Herein, we describe the first well-preserved skull of L. oregonensis from the type formation. Based on this new specimen, we confirm that L. oregonensis is a distinct species from L. primusLeidy, 1856 and L. ancipidensWhite, 1941 that is characterized by a distinct morphology of its tympanic projections and first upper molars. We are also able to describe intraspecific variation within L. oregonensis coinciding with the geographic distribution of the specimens (Oregon and Nebraska). The most variable characters are concentrated in the morphology of the frontals and the upper fourth premolar. Additional specimens will be needed to settle the debate over sexual dimorphism in this species, but this new specimen suggests that Leptarctus oregonensis, despite being one of the smallest members of the Leptarctinae, was an animal-dominated omnivore with considerable crushing ability.
The partial skull of a lion from Natodomeri, northwest Kenya is described. The Natodomeri sites are correlated with Member I of the Kibish Formation, dated to between 195 ka and ca. 205 ka. The skull is remarkable for its very great size, equivalent to the largest cave lions (Panthera spelaea [Goldfuss, 1810]) of Pleistocene Eurasia and much larger than any previously known lion from Africa, living or fossil. We hypothesize that this individual represents a previously unknown population or subspecies of lion present in the late Middle and Late Pleistocene of eastern Africa rather than being an indication of climate-driven size increase in lions of that time. This raises questions regarding the extent of our understanding of the pattern and causes of lion evolution in the Late Pleistocene.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere