Translator Disclaimer
1 December 2015 Simulation of Climate-Tick-Host-Landscape Interactions: Effects of Shifts in the Seasonality of Host Population Fluctuations on Tick Densities
Author Affiliations +
Abstract

Tick vector systems are comprised of complex climate-tick-host-landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially-explicit, individual-based model, parameterized to represent ecological conditions typical of the south-central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size-class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host-class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system-level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co-occurrence of actively host-seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host-seeking ticks in the system were due primarily to the degree of co-occurrence of periods of high densities of unfed ticks and periods of high densities of hosts.

Hsiao-Hsuan Wang, W. E. Grant, P. D. Teel, and S. A. Hamer "Simulation of Climate-Tick-Host-Landscape Interactions: Effects of Shifts in the Seasonality of Host Population Fluctuations on Tick Densities," Journal of Vector Ecology 40(2), 247-255, (1 December 2015). https://doi.org/10.1111/jvec.12161
Received: 10 October 2014; Accepted: 1 April 2015; Published: 1 December 2015
JOURNAL ARTICLE
9 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
ARTICLE IMPACT
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top