How to translate text using browser tools
27 May 2019 Estimated Resistance of the Malaria Mosquito Anopheles messeae s.l. to the Insecticide Malathion
Oleg. V. Vaulin, Dmitry. A. Karagodin, Elina. M. Baricheva, Ilya. K. Zakharov
Author Affiliations +
Abstract

Resistance to agricultural pesticides is an important and insufficiently studied concern for pest and disease vector research. We determined the malathion resistance of species in the Anopheles maculipennis mosquito group in a habitat near Novosibirsk, Russia. Most of the 851 individuals we measured were members of the Anopheles messeae s.l. complex (An. messeae and An. daciae species). The LC50 value for malathion was 0.052 mg/L for the mixed specimens, and we failed to find any differences between species. The LC50 value was within the range of values for malathion resistance of Anopheles stephensi and Culex quinquefasciatus. As the main resistance mechanism to organophosphate and carbamate insecticides is a single mononucleotide substitution in the ace-1 gene, we searched for this mutation in An. messeae s.l. and An. beklemishevi by restriction analysis. This mutation was not found in 347 of the specimens. We sequenced the ace-1 gene fragment for 24 specimens from four species of the Anopheles maculipennis group, including An. messeae, An. daciae, An. atroparvus, and An. beklemishevi. These specimens harbored a nucleotide substitution in the triplet where a mutation can lead to insecticide resistance, but this substitution would make it difficult for the resistance to develop. Since the studied specimens belong to branches of the Palearctic portion of the Anopheles maculipennis group, we suspect that all other Palearctic species of this group would have difficulties harboring the ace-1 mutation that would lead to organophosphate and carbamate resistance.

Oleg. V. Vaulin, Dmitry. A. Karagodin, Elina. M. Baricheva, and Ilya. K. Zakharov "Estimated Resistance of the Malaria Mosquito Anopheles messeae s.l. to the Insecticide Malathion," Journal of Vector Ecology 44(1), 48-56, (27 May 2019). https://doi.org/10.1111/jvec.12328
Received: 11 October 2018; Accepted: 17 December 2018; Published: 27 May 2019
JOURNAL ARTICLE
9 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
ace-1 gene
Anopheles messeae s.l.
insecticide resistance
LC50
malathion
nucleotide substitution
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top