BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 October 2004 EVALUATING MALLARD ADAPTIVE MANAGEMENT MODELS WITH TIME SERIES
PAUL B. CONN, WILLIAM L. KENDALL
Author Affiliations +
Abstract

Wildlife practitioners concerned with midcontinent mallard (Anas platyrhynchos) management in the United States have instituted a system of adaptive harvest management (AHM) as an objective format for setting harvest regulations. Under the AHM paradigm, predictions from a set of models that reflect key uncertainties about processes underlying population dynamics are used in coordination with optimization software to determine an optimal set of harvest decisions. Managers use comparisons of the predictive abilities of these models to gauge the relative truth of different hypotheses about density-dependent recruitment and survival, with better-predicting models giving more weight to the determination of harvest regulations. We tested the effectiveness of this strategy by examining convergence rates of “predictor” models when the true model for population dynamics was known a priori. We generated time series for cases when the a priori model was 1 of the predictor models as well as for several cases when the a priori model was not in the model set. We further examined the addition of different levels of uncertainty into the variance structure of predictor models, reflecting different levels of confidence about estimated parameters. We showed that in certain situations, the model-selection process favors a predictor model that incorporates the hypotheses of additive harvest mortality and weakly density-dependent recruitment, even when the model is not used to generate data. Higher levels of predictor model variance led to decreased rates of convergence to the model that generated the data, but model weight trajectories were in general more stable. We suggest that predictive models should incorporate all sources of uncertainty about estimated parameters, that the variance structure should be similar for all predictor models, and that models with different functional forms for population dynamics should be considered for inclusion in predictor model sets. All of these suggestions should help lower the probability of erroneous learning in mallard AHM and adaptive management in general.

PAUL B. CONN and WILLIAM L. KENDALL "EVALUATING MALLARD ADAPTIVE MANAGEMENT MODELS WITH TIME SERIES," Journal of Wildlife Management 68(4), 1065-1081, (1 October 2004). https://doi.org/10.2193/0022-541X(2004)068[1065:EMAMMW]2.0.CO;2
Received: 20 November 2002; Accepted: 22 July 2004; Published: 1 October 2004
JOURNAL ARTICLE
17 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

KEYWORDS
adaptive management
additive mortality
Anas platyrhynchos
bootstrapping
compensatory mortality
density dependence
mallards
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top