BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Every day in early summer 2018, an estimated 1000 tourists went on guided tours of Svínafellsjökull, an outlet glacier in southeast Iceland. However, this changed on 22 June 2018, when a warning was issued against glacial travel due to the risk of a large landslide caused by a fracture in the surrounding mountainside. Tourists often entrust tourism employees with responsibility for their safety; however, there is a dearth of research into the ways in which tourism employees receive and respond to risk communication. These dynamics were explored in this ethnographic study, which drew on 50 semistructured interviews and extensive participant observation. The results indicate that despite demographic shifts, Icelandic inhabitants remain the basic unit on which risk management processes are centered, with repercussions for the ways in which exposure is calculated and risk is communicated. Tourists and tourism employees have a limited understanding of the risk and emergency protocols compared with local inhabitants. We argue that, for their own safety and that of customers, risk communication needs to be tailored to the needs of tourism employees, including guides and hospitality workers. The recommendations that emerge from this research can guide risk communication strategies in other mountainous regions of the world where tourism is an important source of livelihoods.
Because of its location in the Indian Himalayas, the mountainous state of Uttarakhand is prone to multiple natural hazards and climate change extremes. At the same time, Uttarakhand is experiencing unprecedented population growth and undergoing rapid urbanization. Urban planning instruments like land use plans and building regulations allow disaster risk measures to be integrated in the rapidly emerging urban form. However, resources for formulating and implementing planning instruments might be limited in mountain urban centers. This paper takes stock of the risk addressed in the urban planning instruments at state and local levels through an analysis of land use plans and interviews with urban planning and disaster risk professionals. Results indicate that planning instruments are largely absent and do not sufficiently address urban risks. Lack of urban planning capacity at state and local levels, absence of local-level risk knowledge, and public pushback against introducing developmental regulations are identified as the primary constraints to addressing risk. We underline the urgent need to address risk in the urban development process and recommend broader engagement with universities and nongovernmental organizations to supplement existing knowledge and capacities.
The explosive volcanic eruptions of La Soufrière volcano, St Vincent and the Grenadines, in April 2021 caused the displacement of thousands of people, resulting in heavy disruption of livelihoods and economic activities, destruction of critical infrastructure, and volcanic ash deposits that affected the entire mountainous island of St Vincent and the neighboring island of Barbados. The resulting triple crisis in the region included volcanological risks, the prevailing COVID-19 pandemic, and hydrometeorological risks due to the approaching hurricane season. This article analyzes the scientific and operational activities that The University of the West Indies Seismic Research Centre undertook after effusive activity was detected in December 2020, as well as the actions taken during an official response mission of the United Nations, led by the Joint Environment Unit of the United Nations Environment Programme and the United Nations Office for the Coordination of Humanitarian Affairs in Geneva and upon request for international environmental assistance from the Government of St Vincent. It examines the interplay and collaboration between these 2 organizations and other disaster risk reduction agencies. The article also highlights how the interconnected, systemic nature of risks and disasters emphasizes the ultimate need for regional coordination and collaboration across sectors, including scientific monitoring networks; national, regional, and international emergency preparedness and response agencies; academia; and the private sector. The presented case study for elucidating the ongoing lahar hazard at La Soufrière volcano supports a long-term view for planning and mitigation in this challenging topography. This will help to ensure that the volcanic risks in the Caribbean region are appropriately considered a major component of the multihazard approach undertaken by national authorities and scientists to manage community safety and sustainable economic development through adequate means of disaster risk reduction and emergency preparedness.
Understanding the mountain hydrological cycle, including runoff processes, is important for water-related disaster prevention. Although the process of peak runoff generation is closely related to water hazards, this process has not been clarified in alpine headwaters with large amounts of precipitation. In this study, we conducted hydrological observations to clarify runoff characteristics and factors that determine peak runoff in an alpine headwater under the Asian monsoon climate. Total precipitation during the summer period (3 months) was 1581.4 mm, and the water runoff responded quickly and clearly to rainfall events. Focusing on baseflow, the runoff was terminated when the snow cover area decreased. This suggested that snowmelt water plays an important role in maintaining baseflow in alpine headwaters under the Asian monsoon climate, like other alpine areas worldwide. In addition, peak runoff was not significantly correlated with soil wetness (as indicated by the antecedent precipitation index), whereas it was correlated with the amount of rainfall just before the generation of peak runoff. Therefore, the amount of rainfall before peak runoff in a single event was important in determining peak runoff. Focusing on the snowmelt season, we confirmed that the runoff increased even during small rainfall events. This indicated that snowpack melting is another factor determining peak runoff when the snowpack remains in the catchment. Considering the immediate runoff generation after rainfall events, direct observation of hydrometeorological data in situ is crucial to predict water-related disasters and consider countermeasures in alpine regions.
Climate change is increasingly affecting mountain communities around the world with major implications for human livelihoods and wellbeing. With its predominantly rural population and limited resources, the Indian Himalayan Region is particularly vulnerable. While previous research has highlighted the destructive potential of climate change, we focused on the socioeconomic and ecological drivers of climate vulnerabilities and their links to migration and depopulation trends, which can be observed in the area. A mixed-methods case study approach was used to explore these relationships in the state of Uttarakhand in the western Indian Himalayan Region. Combining evidence from an aggregate vulnerability index, migration data, and insights from qualitative interviews, we found a close link between local climate vulnerabilities and migration. Considering different drivers, we show that limited adaptive capacities are the decisive factor shaping vulnerabilities and migration in the region, in particular, the high dependency on rainfed agriculture together with ecological, infrastructural, human, and financial constraints. With higher vulnerability, migrants tend to become younger, engage more in short-term migration, and increasingly employ migration in response to structural vulnerabilities and livelihood risks. The outmigration of young males has major implications for their origin communities, as the population left behind becomes older and more feminized.
The Andean region presents specific challenges related to its globally important natural heritage, the broad range of pressures on landscapes and ecosystems that accentuate the effects of climate change (CC), and a great diversity of institutional arrangements and policy tools to increase the adaptive capacity of socioecological systems and related disaster risk reduction strategies. In this context, regional readings are needed to generate a multiscale and multisectoral analysis of the responses of Andean countries in public policy and at the grass roots. This paper examines institutional challenges and local perceptions regarding the implementation of CC adaptation policies in the Andean countries. We analyze the regulatory, institutional, and policy framework related to CC policies in Andean countries over the last 5 years. Further, we analyze synergies and opportunities, as well as possible tensions and resistance, that the implementation of CC adaptation policies may generate among diverse actors (civil society organizations, peasant/indigenous communities, and local/regional authorities, among others). For this, we analyze 7 case studies at the subnational level across the Andes. These were chosen to reflect the diversity of local governance contexts across the region and the progress and challenges faced in implementing CC adaptation policies on the ground. This analysis reveals how the implementation of CC adaptation policies in diverse territorial contexts often lacks articulation and coherence with the governance tools and platforms typically used by local actors. In response to this overall limitation, various representative strategies derived from the case studies are highlighted, illustrating different modes of multiactor and multiscale cooperation. Finally, based on our sociopolitical analysis, we propose some key recommendations for the different stakeholders, which could inform the development of an agenda for multiscale and multiactor CC adaptation governance in the region.
Glacial lake outburst floods, and specifically those triggered by avalanche-induced seiche waves, have been studied in considerable detail during the past several decades. Less attention has been given to other cryospheric flood phenomena, which include floods sourced primarily from englacial conduits, permafrost-linked rockfall and avalanches, and earthquake-triggered glacial lake floods. The article reviews examples of each phenomenon, based on field sampling and laboratory analyses, that have occurred in the Nepal Himalaya during the past decade, drawing parallels with similar events in other countries throughout the high mountain world. In most cases, the frequency of these events appears to be increasing globally, as is their potential to inflict significant damage downstream. We argue that each type of glacier flood requires more detailed study to develop the most effective prevention, mitigation, and adaptation approaches possible. Such studies will most likely be strengthened if they include a reconnaissance of the event as soon after its occurrence as possible, along with the participation, insights, and experience of local people, in addition to the use of increasingly powerful remote sensing technologies. How scientists can more quickly and effectively share the results of their research with decision-makers, and how decision-makers and governments can deliver more timely mitigation programs, are areas that also require further strengthening.
Mountains are home to a considerable share of the human population. Around a billion people live in mountainous areas, which harbor rich natural and sociocultural diversity. Today, many people living in mountainous areas worldwide face fundamental changes to their cultural and economic living conditions. At the same time, mountain communities have defied harsh environments in the past by adapting to changing natural conditions and showing remarkable levels of resilience. In this review paper, we provide a comprehensive overview of English-language scientific literature on resilience-related topics in mountain areas based on a systematic review of the Scopus® literature database. We propose a structured starting point for science–practice interactions and concrete action-based activities to support livelihoods and strengthen resilience in mountain areas. We suggest that existing knowledge gaps can be addressed by relying on local knowledge and cocreating solutions with communities. In this way, we can build innovative capacity and actively buffer against the impact of crises while supporting deliberate transformation toward sustainability and regeneration to further enhance resilience.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere