The distribution and abundance of human-caused disturbances vary greatly through space and time and are cause for concern among land stewards in natural areas of the southwestern border-lands between the USA and Mexico. Human migration and border protection along the international boundary create Unauthorized Trail and Road (UTR) networks across National Park Service lands and other natural areas. UTRs may cause soil erosion and compaction, damage to vegetation and cultural resources, and may stress wildlife or impede their movements. We quantify the density and severity of UTR disturbances in relation to soils, and compare the use of previously established targeted trail assessments (hereafter — targeted assessments) against randomly placed transects to detect trail densities at Coronado National Memorial in Arizona in 2011. While trail distributions were similar between methods, targeted assessments estimated a large portion of the park to have the lowest density category (0–5 trail encounters per km2), whereas the random transects in 2011 estimated more of the park as having the higher density categories (e.g., 15–20 encounters per km2 category). Soil vulnerability categories that were assigned, a priori, based on published soil texture and composition did not accurately predict the impact of UTRs on soil, indicating that empirical methods may be better suited for identifying severity of compaction. While the estimates of UTR encounter frequencies were greater using the random transects than the targeted assessments for a relatively short period of time, it is difficult to determine whether this difference is dependent on greater cross-border activity, differences in technique, or from confounding environmental factors. Future surveys using standardized sampling techniques would increase accuracy.
T.C. Esque, R. Inman, K.E. Nussear, R.H. Webb, M.M. Girard, and J. DeGayner. 2016. “Comparison of Methods to Monitor the Distribution and Impacts of Unauthorized Travel Routes in a Border Park.” Natural Areas Journal 36(3):248-258.