Translator Disclaimer
1 July 2005 Spectral Properties of Topical Retinoids Prevent DNA Damage and Apoptosis After Acute UV-B Exposure in Hairless Mice
Author Affiliations +

We showed in a recent study that topical retinyl palmitate prevented UV-B–induced DNA damage and erythema in humans. Given that retinyl palmitate is a precursor of retinoic acid, the biological form of vitamin A that acts through nuclear receptors, we wondered whether these protective effects toward UV-B exposure were either receptor dependent or linked to other properties of the retinoid molecule such as its spectral properties. We determined the epidermal retinoid profile induced by topical retinoic acid in hairless mice and analyzed its effect on markers of DNA photodamage (thymine dimers) and apoptosis following acute UV-B exposure; we compared these effects to those induced by other natural topical retinoids (retinaldehyde, retinol and retinyl palmitate) which do not directly activate the retinoid receptors. We then analyzed the direct action of these retinoids on UV-B–induced DNA damage and apoptosis in cultured A431 keratinocytes. Topical retinoic acid significantly decreased (≈50%) the number of apoptotic cells, as well as the formation of thymine dimers in the epidermis of mice exposed to acute UV-B. Interestingly, the other topical retinoids decreased apoptosis and DNA damage in a similar way. On the other hand, neither retinoic acid nor the other retinoids interfered with the apoptotic process in A431 keratinocytes exposed to UV-B, whereas DNA photodamage was slightly decreased. We conclude that the decrease of apoptotic cells in hairless mouse epidermis following topical retinoids and UV-B irradiation reflects a protection of the primary targets of UV-B (DNA) by a mechanism independent of the activation of retinoid nuclear receptors, rather than a direct inhibition of apoptosis.

O. Sorg, C. Tran, P. Carraux, D. Grand, A. Hügin, L. Didierjean, and J-H. Saurat "Spectral Properties of Topical Retinoids Prevent DNA Damage and Apoptosis After Acute UV-B Exposure in Hairless Mice," Photochemistry and Photobiology 81(4), 830-836, (1 July 2005).
Received: 1 October 2004; Accepted: 1 March 2005; Published: 1 July 2005

This article is only available to subscribers.
It is not available for individual sale.

Get copyright permission
Back to Top