Elsässer, T. and Scholz, M. Cluster Effects within the Local Effect Model. Radiat. Res. 167, 319–329 (2007).
The local effect model predicts the relative biological effectiveness (RBE) for different ions and cell lines starting from the corresponding experimental photon data and an amorphous track structure model. Here we present an extension of the model that takes cluster effects of single-strand breaks (SSBs) at the nanometer scale into account. In line with the main idea of the local effect model, we take the yields of SSBs and double-strand breaks (DSBs) from experimental photon data and use a Monte Carlo method to distribute them onto the DNA. We score clusters of SSBs where individual SSBs are separated by less than 25 bp as additional DSBs. Assuming that the number of DSBs is a measure of cell lethality, we derive a modified cell survival curve for photons that takes these cluster effects into account. In combination with an improved radial dose distribution, we find that the extended local effect model including cluster effects reproduces most experimental data better than the original local effect model and thus enhances the accuracy of the local effect model.