Translator Disclaimer
5 April 2011 A Robust Curve-Fitting Procedure for the Analysis of Plasmid DNA Strand Break Data from Gel Electrophoresis
Stephen J. McMahon, Fred J. Currell
Author Affiliations +
Abstract

A robust method for fitting to the results of gel electrophoresis assays of damage to plasmid DNA caused by radiation is presented. This method makes use of nonlinear regression to fit analytically derived dose–response curves to observations of the supercoiled, open circular and linear plasmid forms simultaneously, allowing for more accurate results than fitting to individual forms. Comparisons with a commonly used analysis method show that while there is a relatively small benefit between the methods for data sets with small errors, the parameters generated by this method remain much more closely distributed around the true value in the face of increasing measurement uncertainties. This allows for parameters to be specified with greater confidence, reflected in a reduction of errors on fitted parameters. On test data sets, fitted uncertainties were reduced by 30%, similar to the improvement that would be offered by moving from triplicate to fivefold repeats (assuming standard errors). This method has been implemented in a popular spreadsheet package and made available online to improve its accessibility.

Stephen J. McMahon and Fred J. Currell "A Robust Curve-Fitting Procedure for the Analysis of Plasmid DNA Strand Break Data from Gel Electrophoresis," Radiation Research 175(6), 797-805, (5 April 2011). https://doi.org/10.1667/RR2514.1
Received: 26 November 2010; Accepted: 1 January 2011; Published: 5 April 2011
JOURNAL ARTICLE
9 PAGES


Share
SHARE
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top