Translator Disclaimer
10 June 2011 Geldanamycin Analog 17-DMAG Limits Apoptosis in Human Peripheral Blood Cells by Inhibition of p53 Activation and its Interaction with Heat-Shock Protein 90 kDa after Exposure to Ionizing Radiation
Risaku Fukumoto, Juliann G. Kiang
Author Affiliations +
Abstract

Exposure to ionizing radiation induces p53, and its inhibition improves mouse survival. We tested the effect of 17-dimethylamino-ethylamino-17-demethoxygeldanamycin (17-DMAG) on p53 expression and function after radiation exposure. 17-DMAG, a heat-shock protein 90 (Hsp90) inhibitor, protects human T cells from ionizing radiation-induced apoptosis by inhibiting inducible nitric oxide synthase (iNOS) and subsequent caspase-3 activation. Using ex vivo human peripheral blood mononuclear cells, we found that ionizing radiation increased p53 accumulation, acute p53 phosphorylation, Bax expression and caspase-3/7 activation in a radiation dose- and time postirradiation-dependent manner. 17-DMAG inhibited these increases in a concentration-dependent manner (IC50  =  0.93 ± 0.01 µM). Using in vitro models, we determined that inhibition of p53 by genetic knockout resulted in lower levels of caspase-3/7 activity 1 day after irradiation and enhanced survival at 10 days. Analysis of p53–Hsp90 interaction in ex vivo cell lysates indicated that the binding between the two molecules occurred after irradiation but 17-DMAG prevented the binding. Taken together, these results suggest the presence of p53 phosphorylation and Hsp90-dependent p53 stabilization after acute irradiation. Hsp90 inhibitors such as 17-DMAG may prove useful with radiation-based cancer therapy as well as for general radioprotection.

by Radiation Research Society
Risaku Fukumoto and Juliann G. Kiang "Geldanamycin Analog 17-DMAG Limits Apoptosis in Human Peripheral Blood Cells by Inhibition of p53 Activation and its Interaction with Heat-Shock Protein 90 kDa after Exposure to Ionizing Radiation," Radiation Research 176(3), 333-345, (10 June 2011). https://doi.org/10.1667/RR2534.1
Received: 11 December 2010; Accepted: 1 April 2011; Published: 10 June 2011
JOURNAL ARTICLE
13 PAGES


Share
SHARE
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top