We investigated the kinetics of simple and complex types of double-strand breaks (DSB) using our newly proposed mechanistic mathematical model for NHEJ DSB repair. For this purpose the simulated initial spectrum of DNA DSB, induced in an atomistic canonical model of B-DNA by low-energy single electron tracks, 100 eV to 4.55 keV, and the electrons generated by ultrasoft X rays (CK, AlK and TiK), were subjected to NHEJ repair processes. The activity elapsed time of sequentially independent steps of repair performed by proteins involved in NHEJ repair process were calculated for separate DSB. The repair kinetics of DSBs were computed and compared with published data on repair kinetics obtained by pulsed-field gel electrophoresis method. The comparison shows good agreement for V79-4 cells irradiated with ultrasoft X rays. The average times for the repair of simple and complex DSB confirm that double-strand break complexity is a potential explanation for the slow component of DSB repair observed in V79-4 cells irradiated by ultrasoft X rays.
Translator Disclaimer
ACCESS THE FULL ARTICLE

Radiation Research
Vol. 179 • No. 5
May 2013
Vol. 179 • No. 5
May 2013