How to translate text using browser tools
1 November 2016 Base Release and Modification in Solid-Phase DNA Exposed to Low-Energy Electrons
Surakarn Choofong, Pierre Cloutier, Léon Sanche, J. Richard Wagner
Author Affiliations +
Abstract

Ionization generates a large number of secondary low-energy electrons (LEEs) with a most probable energy of approximately 10 eV, which can break DNA bonds by dissociative electron attachment (DEA) and lead to DNA damage. In this study, we investigated radiation damage to dry DNA induced by X rays (1.5 keV) alone on a glass substrate or X rays combined with extra LEEs (average energy of 5.8 eV) emitted from a tantalum (Ta) substrate under an atmosphere of N2 and standard ambient conditions of temperature and pressure. The targets included calf-thymus DNA and double-stranded synthetic oligonucleotides. We developed analytical methods to measure the release of non-modified DNA bases from DNA and the formation of several base modifications by LC-MS/MS with isotopic dilution for precise quantification. The results show that the yield of non-modified bases as well as base modifications increase by 20–30% when DNA is deposited on a Ta substrate compared to that on a glass substrate. The order of base release (Gua > Ade > Thy ∼ Cyt) agrees well with several theoretical studies indicating that Gua is the most susceptible site toward sugar-phosphate cleavage. The formation of DNA damage by LEEs is explained by DEA leading to the release of non-modified bases involving the initial cleavage of N1-C1′, C3′-O3′ or C5′-O5′ bonds. The yield of base modifications was lower than the release of non-modified bases. The main LEE-induced base modifications include 5,6-dihydrothymine (5,6-dHT), 5,6-dihydrouracil (5-dHU), 5-hydroxymethyluracil (5-HmU) and 5-formyluracil (5-ForU). The formation of base modifications by LEEs can be explained by DEA and cleavage of the C-H bond of the methyl group of Thy (giving 5-HmU and 5-ForU) and by secondary reactions of H atoms and hydride anions that are generated by primary LEE reactions followed by subsequent reaction with Cyt and Thy (giving 5,6-dHU and 5,6-dHT).

©2016 by Radiation Research Society.
Surakarn Choofong, Pierre Cloutier, Léon Sanche, and J. Richard Wagner "Base Release and Modification in Solid-Phase DNA Exposed to Low-Energy Electrons," Radiation Research 186(5), 520-530, (1 November 2016). https://doi.org/10.1667/RR14476.1
Received: 30 March 2016; Accepted: 1 July 2016; Published: 1 November 2016
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top