Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The objective of this study is describe outcome and toxicity for dogs with oral tumors, specifically oral malignant melanoma (OMM), squamous cell carcinoma (SCC), and soft tissue sarcoma (STS) after stereotactic body radiation therapy (SBRT). A single institution retrospective study was conducted. Outcomes were analyzed using Kaplan-Meier analysis and Cox proportional hazard analysis. Treatment responses at different time points were evaluated with Pearson's Chi-squared test to identify prognostic factors. Acute and late toxicities were recorded according to VRTOG criteria and were analyzed to identify risk factors. Adverse events other than acute and late toxicities were recorded. A total of 98 patients met the inclusion criteria (OMM n = 37; SCC n = 18; STS n = 43). The SBRT prescription was 1–6 fractions, with a total dose range of 12–40 Gy. Local progression-free survival (PFS) for OMM, SCC, and STS was 187, 253, and 161 days, respectively. Overall PFS was 152 days and median survival time (MST) was 270 days, with no statistical difference between tumor types. The presence of lymph node metastasis and the use of elective nodal irradiation (ENI) were associated with shorted PFS and MST. Severe acute toxicities to organs at risk affected 10/85 (11.8%) of patients. Osteoradionecrosis and oronasal fistula formation occurred in 23/81 (28.4%) of patients and was significantly associated with tumor type (SCC, P = 0.006). SBRT can be offered as a treatment option for oral tumors in dogs. Toxicities were common and warrant risk factor considerations and adjustments to current SBRT protocols.
Dose rate is one of the important parameters in radiation-induced biomolecular damage. The effects of dose rate have been known to modify radiation toxicity in biological systems. The rate and extent of sublethal DNA damage (e.g., base damage and single-strand breaks) repair and those of cell proliferation have been manifested by dose rate. However, the recent preclinical application of ultrahigh dose rate [(UHDR) ca. 40 Gy/s and higher] radiation modalities have been shown to lower the type and extent of radiation damage to biological systems. At these UHDR, radiation-induced physicochemical and chemical processes are expected to differ from those observed after irradiation at conventional dose rates (CONV). It is unclear whether these UHDR conditions can affect the quality (type) and quantity (extent) of biomolecular damage such as DNA lesions. Here, we comparatively study the influence of indirect effects of CONV and UHDR on the formation of DNA strand breaks and clustered damage including densely accumulated lesions in an aerated and an anoxic dilute aqueous solution of a plasmid DNA model under low and high hydroxyl radical (•OH) scavenging conditions. Aqueous solutions of purified supercoiled plasmid DNA (pUC19) were prepared in either air- or nitrogen-saturated conditions, with Tris buffer added as the radiation-produced •OH scavenger at low and high scavenging capacities. These DNA samples were irradiated using kV X-ray systems at CONV (0.1 Gy/s) and high dose rate (HDR, 25 Gy/s) as well as UHDR (55 and 125 Gy/s) under different scavenging and environmental conditions. DNA lesions including strand breaks and clustered damage including densely accumulated lesions were quantified by gel electrophoresis and the yields of these lesions were calculated from the dose-response curve. Non-DSB clustered damage including densely accumulated lesions were evaluated by treating DNAs using bacterial endonuclease enzymes (Fpg and Nth) prior to gel electrophoresis. UHDR of 55 and 125 Gy/s induced lower amounts of both isolated strand breaks and clustered DNA damage including densely accumulated lesions at doses >40 Gy in the presence of oxygen, compared to the abundance of these lesions induced by 0.1 and 25 Gy/s irradiation under the same dose conditions. Overall, the strand break and clustered damage including densely accumulated lesions yields decreased by factors of 1.3–3.5 after UHDR. We did not observe these differences either via •OH scavenging or by removing oxygen from the solution. In addition, our results point out that the inter-track recombination reactions did not contribute to the observed dose-rate effects on DNA damage. The effects of dose rate on DNA damage are highly dependent on the total dose, as expected, but also on the •OH scavenging capacity that is employed in the aqueous DNA solutions. These important variables may be relevant in biological systems as well. On a practical level, our in vitro plasmid DNA model, which permits to precisely vary the •OH scavenging capacity and gassing conditions (air saturated vs. N2 saturated) can help to differentiate dose-rate effects on biomolecular damage. Our results indicate that the radical-radical reactions are important in understanding the dose-rate effect on DNA damage.
Susannah G. Ellsworth, Alison Ross, Kevin R. Y. Shiue, Pranav Murthy, Miranda L. Byrne-Steel, Ravi Patel, Richard C. Zellars, Feng-Ming (Spring) Kong, Amy Miller, Kristen A. Russ, Michael T. Lotze
Radiation-induced lymphopenia (RIL) is associated with worse outcomes in patients with multiple solid tumors. Hypofractionated radiation therapy (HFRT) reduces RIL compared with conventionally fractionated radiation therapy (CFRT). However, fractionation effects on immune repertoire (IR) diversity are unknown. RNA-based T- and B-cell receptor sequencing was performed on peripheral lymphocytes collected prospectively before radiation therapy and <4 weeks after the final radiation fraction. Patients received CFRT (≤3 Gy/day × ≥10 days 6 chemotherapy, n = 13) or HFRT (≥5 Gy/day × ≤5 days, n = 10), per institutional standards of care. Immune repertoire diversity parameters analyzed were number of unique CDR3 receptors (uCDR3), Shannon entropy, and sample clonality (percentage of all receptors represented by the top 10 clones). RIL was severe with concurrent chemotherapy (median %D ALC -58.8%, –12.5%, and –28.6% in patients treated with CFRT and chemo, CFRT alone, and HFRT, respectively). CFRT and concurrent chemotherapy was associated with more severe diversity restriction in all examined parameters than either HFRT or CFRT alone. Increased immune repertoire diversity despite decreased ALC was more common in patients treated with HFRT than CFRT and significantly less common in patients treated with concurrent chemotherapy (P < 0.001). Radiation-induced changes in immune repertoire diversity are variably reflected in the peripheral ALC. Both HFRT and CFRT caused RIL, but HFRT was associated with improved immune repertoire diversity despite RIL. The addition of chemotherapy may potentiate radiation-induced restriction in immune repertoire diversity. As immune repertoire diversity is associated with response to immunotherapy, these findings may have implications for radiation therapy/chemotherapy/immunotherapy combinations. Further studies are required to understand the relationship between radiation, circulating lymphocyte populations, immune repertoire diversity and response to treatment.
Lawrence T. Dauer, Michael T. Mumma, Julie C. Lima, Sarah S. Cohen, Daniel Andresen, Amir A. Bahadori, Michael Bellamy, David A. Bierman, Steve Blattnig, Benjamin French, Eric Giunta, Kathryn Held, Nolan Hertel, Laura Keohane, Richard Leggett, Loren Lipworth, Kathleen B. Miller, Ryan B. Norman, Caleigh Samuels, Kali S. Thomas, Sergei Y. Tolmachev, Linda Walsh, John D. Boice Jr
The study of One Million U.S. Radiation Workers and Veterans, the Million Person Study (MPS), examines the health consequences, both cancer and non-cancer, of exposure to ionizing radiation received gradually over time. Recently the MPS has focused on mortality patterns from neurological and behavioral conditions, e.g., Parkinson's disease, Alzheimer's disease, dementia, and motor neuron disease such as amyotrophic lateral sclerosis. A fuller picture of radiation-related late effects comes from studying both mortality and the occurrence (incidence) of conditions not leading to death. Accordingly, the MPS is identifying neurocognitive diagnoses from fee-for-service insurance claims from the Centers for Medicare and Medicaid Services (CMS), among Medicare beneficiaries beginning in 1999 (the earliest date claims data are available). Linkages to date have identified ∼540,000 workers with available health information. Such linkages provide individual information on important co-factor and confounding variables such as smoking, alcohol consumption, blood pressure, obesity, diabetes and many other health and demographic characteristics. The total person-level set of time-dependent variables, outcomes, organ-specific dose measures, co-factors, and demographics will be massive and much too large to be evaluated with standard software. Thus, development of specialized open-source software designed for large datasets (Colossus) is nearly complete. The wealth of information available from CMS claims data, coupled with individual dose reconstructions, will thus greatly enhance the quality and precision of health evaluations for this new field of low-dose radiation and neurocognitive effects.
Radiation exposure causes hepatitis which induces hepatic steatosis and fibrosis. Although hepatic stellate cells (HSCs) have been considered potential pathological modulators for the development of hepatitis due to viral and microbial infections, their involvement in radiation-induced hepatitis is yet to be determined. This study aimed to clarify the relationship between radiation exposure and expressions of inflammatory cytokines and chemokines in HSCs in vitro and in vivo. HSCs were obtained from 1-week-old mice, known to be highly sensitive to radiation-induced hepatocellular carcinoma, using a newly established method combining liver perfusion, cell dissociation, and density gradient centrifugation, followed by magnetic negative selection of hematopoietic and endothelial cells with anti-CD45.2 and CD146 antibodies. The isolated HSCs were confirmed by the expression of desmin and glial fibrillary acidic protein (GFAP). We demonstrated that primary cultured HSCs, exposed to X-ray irradiation (0, 1.9, and 3.8 Gy) and cultured for 3 and 7 days, produced elevated levels of C-C motif chemokine ligand 5 (CCL5, also known as RANTES) inflammatory chemokine in a dose-dependent manner. An in vivo immunofluorescence method confirmed that increased CCL5 signals were observed in GFAP-positive HSCs in mouse livers 7 days after whole-body X-ray irradiation (1.9 and 3.8 Gy). Adequate expression of C-C motif chemokine receptor 5 (Ccr5), a receptor for CCL5, was also detected using real-time PCR in the liver of both irradiated and non-irradiated mice. Taken together, our data suggest that HSCs may drive hepatitis via CCL5/CCR5 axis in the liver under radiation-induced stress. Furthermore, this newly established experimental protocol can help evaluate the expression of other inflammatory cytokines in primary cultures of HSCs isolated from infant mice.
The present work investigates the multigenerational effects of paternal pre-conceptional exposure to continuous low-dose-rate gamma rays in C56BL/6J mice. Male C57BL/ 6J (F0 sires) mice were exposed to low dose rates of 20, 1, and 0.05 mGy/day for 400 days, to total accumulated doses of 8,000, 400, and 20 mGy, respectively. Upon completion of the radiation exposure, the F0 male mice were immediately bred to non-irradiated 8-week-old C57BL/6J females (F0 dams) to produce the first-generation (F1) mice. Randomly selected F1 males and females were then bred to produce the second-generation (F2) mice. All the mice, except the F0 dams, were subjected to pathological examination upon natural death. Reproductive parameters, lifespan, causes of death, neoplasm incidences and non-neoplastic disease incidences were used as parameters to evaluate the biological effects of continuous pre-conceptional exposure of the sires (F0) to continuous low-dose-rate radiation. There were no significant differences in the pregnancy and weaning rates among the parent (F0) generation. Average litter size and average number of weaned pups (F1) from dams bred to males (F0) exposed to 20 mGy/ day were significantly decreased compared to the non-irradiated controls. Significant lifespan shortening in the sires (F0) was observed only in the 20 mGy/day group due to early death from malignant lymphomas. Life shortening was also observed in the F1 progeny of sires (F0) exposed to 20 and 1 mGy/day, but could not be attributed to a specific cause. No significant differences in the causes of death were found between dose groups in any generation. The number of primary tumors per mouse was significantly increased only in the F0 males exposed to 20 mGy/day. Except for the increased incidence rate for Harderian gland neoplasms in sires (F0) exposed to 20 mGy/day, there was no significant difference in neoplasm incidences and tumor spectra in all 3 generations in each sex regardless of radiation exposure. No multi- or transgenerational effects in the parameters examined were observed in the F1 and F2 progeny of sires exposed to 0.05 mGy/day for 400 days.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere