Grasslands represent a large potential reservoir in storing carbon (C) in plant biomass and soil organic matter via C sequestration, but the potential greatly depends on how grasslands are managed, especially for livestock and wild animal grazing. Positive and negative grazing effects on soil organic carbon have been reported by various studies globally, but it is not known if Canadian grasslands function as a source or a sink for atmospheric C under current management practices. This article examines the effect of grassland management on carbon storage by compiling historical range management facts and measurements from multiple experiments. Results indicate that grazing on grasslands has contributed to a net C sink in the top 15-cm depth under current utilization regimes with a removal rate of CO2 at 0.19 ± 0.02 Mg · C · ha−1 · yr−1 from the atmosphere during recent decades, and net C sequestration was estimated at 5.64 ± 0.97 Mg · C · ha−1 on average. Naturalization of 2.3 M ha of previously cultivated grasslands in the 1930s has also led to C sequestration in the Canadian prairies but has likely abated as the pool has saturated. Efforts made by researchers, policymakers, and the public has successfully led to the restoration of the Canadian prairies to a healthier state and to achieve considerable C sequestration in soils since their severe deterioration in the 1930s. In-depth analysis of management, legislation, and agricultural programs is urgently needed to place the focus on maintaining range health and achieving more C storage in soils, particularly when facing the reduced potential for further C sequestration.