Stable bunchgrass populations are essential to resilience and restoration of sagebrush steppe rangelands, yet few studies have assessed long-term variation in plant abundance from a known starting point. We capitalized on a previous paddock study by reestablishing in 2011 nine replicate blocks consisting of 29 × 29 grid of cells, each planted in 1998 with a single individual of one of eight sagebrush steppe bunchgrasses, including the widely planted exotic, crested wheatgrass (Agropyron cristatum). Plant species and numbers were determined in 2011 for each cell, which were classified as holds or cedes, with ceded cells used to determine species-specific gains. We hypothesized the competitive crested wheatgrass would proportionally occur more in gained cells compared with native grasses. While crested wheatgrass did proportionally hold and gain the greatest number of cells, the relative number of plants within holds and gains was constant across all species, with most plants (80 - 87%) occurring outside cells originally planted with them. Crested wheatgrass had greater proportions of holds and gains where it was the only species within the cell and showed even presence across all cells planted with other grass species in 1998. Native grasses were underrepresented in 1998 crested wheatgrass cells and sometimes overrepresented in other native species cells. The ratio of total crested wheatgrass to native bunchgrass plants followed a sigmoidal step increase with increasing crested wheatgrass density. These results show population changes in sagebrush steppe bunchgrasses are determined by seed production and emergent seedling survival, both of which are stronger in the exotic bunchgrass. This study also showed that native grasses can maintain presence via seed in areas depending on crested wheatgrass density. This information could help shape management strategies capitalizing on the utility of crested wheatgrass and sustaining desirable levels of native grass productivity and diversity.