
1

Supporting Information

for

Thermal performance curves and the Metabolic Theory of Ecology – a practical

guide to models and experiments for parasitologists

Péter K. Molnár, Jason P. Sckrabulis, Karie A. Altman, Thomas R. Raffel

CONTENT:

Appendix S1. Derivation on an Anderson-May-type host-parasite model for a specialist

nematode with an endotherm definitive host and a mandatory free-living stage during which

larvae develop to infectivity (p. 2)

Appendix S2. Why apparent development time is more temperature-sensitive than real

development time (p. 4).

………….Figure S1 Why apparent development time is more temperature-sensitive than real

 development time (p. 5)

Appendix S3. The ‘classical approach to perturbation analyses of R0(T), and R-codes for both the

classical approach and the new approach suggested in Section 3.1 (p. 6).

………….Figure S2 Perturbation analyses of an MTE-parameterized null model for a nematode with

 an endotherm host, a mandatory free-living stage, and active host infection (cf. Fig. 3),

 but now using the ‘classical approach’ of determining the additive contribution of

 development (θ), mortality (µ), and host encounter (ρ) to the temperature sensitivity of

 R0(T), dR0/dT (p. 6).

………….Appendix S3.1: R-code Figure S2 (‘classical approach’) (p. 7).

………….Appendix S3.2: R-code Figure 6 (‘new approach’) (p. 10).

Appendix S4. Case study in SS model fitting using Schistosoma mansoni cercaria activity data (p.

13).

………….Figure S3 Specimen cup lids used in swimming speed experiment (p. 20)

………….Figure S4 Visualization of the artificially created block effect on the S. mansoni cercariae

 swimming speed experimental data (p. 21)

Literature Cited for Supporting Information (p. 22).

2

Appendix S1. Anderson-May-type model for the host-parasite dynamics of a one-nematode-

one-endotherm-host system (Fig. 1B).

In this Appendix, we specify a dynamic host-parasite model for the one-nematode-one-

endotherm-host dynamics shown in Figure 1B. Here, adult parasites reside within the endotherm

host and produce transmission stages that pass out of the host into the environment. Free-living

larvae then need to pass through one or more developmental stages before they become

infective and can be taken up again by the host. All transition rates may hereby depend on

temperature if they occur outside the definitive host, but are assumed temperature-independent

otherwise due to host endothermy (Fig. 1B). Following the classical framework of Anderson &

May, we obtain a set of coupled differential equations that explicitly track the abundance of

hosts, (H), adult parasites within hosts (P), and free-living uninfective (LU) and infective (LI) larvae

as a function of temperature (T) through time (t) (Anderson & May, 1978; Molnár et al., 2013);

 (S1a)     UUUUP
U LTLTP

dt

dL
 

(S1b)       IHIIUU
I HLTLTLT

dt

dL
  ,

(S1c)     






 


j

j

H

P

H

P
HPdHLTq

dt

dP
PHPIHH

1
2

2



(S1d)    PHdb
dt

dH
PPHH  

Here, λP represents the per capita rate of parasite birth; µU(T) and µI(T) are the stage- and

temperature-dependent per capita rates of parasite mortality; θU(T) is the temperature-

dependent per capita development rate of uninfective parasite larvae to the infective stage;

ρH(T)H is the rate at which an infective larva encounters hosts (temperature-dependent for

parasites that actively seek out host, and temperature-independent otherwise); qH is the

probability that a parasite establishes within its host following uptake; bH and dH are the rates of

host birth and natural host death; βP and δP quantify the effect of the parasite on host fecundity

and death; and j describes the degree of parasite aggregation within the host population

assuming a negative binomial distribution. Seasonal variability and potential range changes are

ignored in this model for simplicity, but the model could easily be extended with these and other

processes for more detailed analyses (Anderson & May, 1991; Keeling & Rohani, 2008).

 R0(T), defined as the temperature-dependent expected lifetime reproductive output of a

newborn larva in the absence of density-dependence (Anderson & May 1991), is then calculated

as the dominant eigenvalue of the temperature-dependent next-generation matrix, N(T), of

equations S1 (Hurford et al., 2010). Here, N(T) = F(T)V(T)-1 with

3

 


















000

000

00 P

TF



 and  

   

     

  























PHPHH

HIU

UU

dHTq

HTTT

TT

TV







0

0

00

,

from which we obtain

 
 

   
 

   HTT

HT

TT

T

d

q
TR

HI

H

UU

U

PHP

PH




















0 .

4

Appendix S2. Why apparent development time is more temperature-sensitive than real

development time

In this Appendix, we consider the development of uninfective free-living larvae to infectivity (Fig.

1B; stage LU to LI), and show that estimates of the activation energy of observed (apparent)

development times, Eθ’, will systematically overestimate the true activation energy of

development, Eθ, due to a failure to account for the influence of mortality.

 First, we note that the observed (apparent) distribution of development times will

underestimate the actual distribution of development times in any cohort experiment if mortality

is not accounted for (Braner & Hairston, 1989). More specifically, it can be shown that the

difference between the true and apparent means of development time, M and M‘, equals the

product of the variance in development time, σ2, and the mortality rate, µ, if development times

are normally distributed (Braner & Hairston, 1989) (Fig. S1A):

(S2)  2MM .

As this difference increases with increasing temperatures (due to the temperature-dependence

of the mortality rate, µ(T)), estimates of Eθ’ (apparent activation energy of development, based

on M‘(T)) will always overestimate the true activation energy of development Eθ (which needs

to be estimated from the true development means, M(T); Fig. S1B,C).

5

Figure S1. Why apparent development time is more temperature-sensitive than real
development time. (A) The relationship between apparent and real development. Number of
individuals maturing as a function of time when development time is normally distributed,
without (=real development; black line) and with mortality (=apparent development; blue line).
Vertical lines mark the mean development time without (M) and with (M’ = M – σ2µ) mortality.
Parameters were set as M = 10 d, σ2 = 10 d2 (variance of development time), and µ = 0.2 d-1
(mortality rate), implying M’ = 8 d (eqn S2). Redrawn from Braner & Hairston (1989). Panels (B)
and (C) illustrate why these discrepancies lead to biased (overestimated) activation energies of
development time if these estimates are based on apparent development time. In both panels
we assume that development time is normally distributed with a mean M(T) that is temperature-
sensitive according to the BA equation with activation energy Eθ = 0.55 eV, variance σ2 = 10 d2,
and a baseline development time of 1/θ0 = 40 d at T0 = 20 C (black line). Furthermore, we assume
that mortality rates also follow a BA equation with Eµ = 0.55 eV (panel B) or Eµ = 0.20 eV (panel
C), and a baseline mortality of µ = 0.5 d-1 at T0 = 20 C. Adding -σ2µ(T) (red lines) to M(T) yields
apparent development times as a function of temperature, M’(T) (eqn 5; blue crosses). Fitting a
BA curve (eqn 1) to these simulated data (blue lines) yields activation energies Eθ’ that
overestimate the true activation energy of development Eθ, essentially because the contributions
of mortality and developmental variance (red lines) lead to steeper temperature-dependencies
in apparent development times (blue crosses) than in true development times (black line). This
effect becomes stronger as mortality becomes more temperature-sensitive (contrast panels B &
C; c.f. Fig. 5).

6

Appendix S3. The ‘classical approach to perturbation analyses of R0(T) (Fig. S2), and R-codes for

both the classical approach and the new approach suggested in Section 3.1

Figure S2. Perturbation analyses of an MTE-parameterized null model for a nematode with an endotherm

host, a mandatory free-living stage, and active host infection (cf. Figs. 1, 3), but now using the ‘classical

approach’ of determining the additive contributions of development (θ), mortality (µ), and host encounter

(ρ) to the temperature sensitivity of R0(T), dR0/dT. The additive contributions of each of these parameters

are hereby calculated using the chain rule of partial derivatives, i.e. dR0/dT = ∂R0/∂θ*dθ/dT +

∂R0/∂µ*dµ/dT + ∂R0/∂ρ*dρ/dT. Black curve: sensitivity of R0(T) to temperature, dR0/dT; blue

(development), red (mortality), and green (encounter) curves show the additive contribution of each trait

to this temperature-sensitivity (i.e. ∂R0/∂x*dx/dT). Baseline parameters of development (θ), mortality (µ)

and encounter (ρ) rates are set as in Fig. 3: θ0 = 0.03 d-1, µ0 = 0.06 d-1, ρ0 = 0.01 d-1 at T0 = 22.5 C, and

E = 0.65 eV, -EL = EH = 3.25 eV, TL = 10 C, TH = 35 C for all three traits.

7

S3.1 – R-code for the ‘classical approach’ to perturbation analyses of R0(T) (Fig. S2)

The ‘classical approach’ to elasticity analyses of R0(T). This code

reproduces Fig S2 of the article, that is, it decomposes the

derivative of R0 w.r.t. temperature T, into its partial derivative

w.r.t to the performance traits development, mortality, encounter

rate, using the chain rule of partial derivations.

Parameter settings ---

minTemp <- 273.15 # setting min and max temperatures for simulations

maxTemp <- 318.15

resol <- 0.01

TT <- seq(minTemp, maxTemp, resol)

theta0 <- 0.03; mu0 <- 0.06; rho0 <- 0.01 # baseline parameters

E_theta <- 0.65; E_mu <- 0.65; E_rho <- 0.65

T0_theta <- 295.65; T0_mu <- 295.65; T0_rho <- 295.65

T0_thetaL <- 283.15; T0_muL <- 283.15; T0_rhoL <- 283.15

T0_thetaH <- 308.15; T0_muH <- 308.15; T0_rhoH <- 308.15

E_thetaL <- -3.25; E_muL <- -3.25; E_rhoL <- -3.25;

E_thetaH <- 3.25; E_muH <- 3.25; E_rhoH <- 3.25;

k <- 8.62*10^(-5) # Boltzmann’s constant

Sharpe-Schoolfield expressions for theta, mu, rho and Ro -----------

thetaSS <- quote(theta0 * exp(-(E_theta/k) * (1/T_ - 1/T0_theta)) *

(1+ exp(E_thetaL/k * (-1/T_+1/T0_thetaL)) + exp(E_thetaH/k *

(-1/T_+1/T0_thetaH)))^(-1))

muSS <- quote(mu0 * exp(-(E_mu /k) * (1/T_ - 1/T0_mu)) * (1+

exp(E_muL /k * (-1/T_+1/T0_muL)) + exp(E_muH/k *

(-1/T_+1/T0_muH))))

rhoSS <- quote(rho0 * exp(-(E_rho /k) * (1/T_ - 1/T0_rho)) * (1+

exp(E_rhoL/k * (-1/T_+1/T0_rhoL)) + exp(E_rhoH/k *

(-1/T_+1/T0_rhoH)))^(-1))

R0SS <- quote((rhoSS*thetaSS) / ((muSS + thetaSS) * (muSS + rhoSS)))

Substitute the SS-models for theta, mu, rho into R0

R0SS <- substituteDirect(R0SS, list(thetaSS = thetaSS, muSS = muSS,

rhoSS = rhoSS))

Derivatives of R0 and SS parameters with respect to temperature ----

dthetaSS_dT <- deriv(thetaSS, "T_")

dmuSS_dT <- deriv(muSS, "T_")

drhoSS_dT <- deriv(rhoSS, "T_")

dR0SS_dT <- deriv(R0SS, "T_")

8

Create functions that evaluate the derivatives at given temperatures

f_dthetaSS_dT <- function(T) attr(eval(dthetaSS_dT, list(T_=T)),

"gradient")

f_dmuSS_dT <- function(T) attr(eval(dmuSS_dT, list(T_=T)), "gradient")

f_drhoSS_dT <- function(T) attr(eval(drhoSS_dT, list(T_=T)),

"gradient")

f_dR0SS_dT <- function(T) attr(eval(dR0SS_dT, list(T_=T)), "gradient")

Derivatives of R0 with respect to the performance traits theta, mu,

rho ------------------------

R0 <- quote((rho*theta)/((mu+theta)*(mu+rho)))

dR0_dtheta <- deriv(R0, "theta")

dR0_dmu <- deriv(R0, "mu")

dR0_drho <- deriv(R0, "rho")

Substitute the SS-models for theta, mu and rho into the derivatives

dR0_dtheta <- substituteDirect(dR0_dtheta[[1]], list(theta = thetaSS,

mu = muSS, rho = rhoSS))

dR0_dmu <- substituteDirect(dR0_dmu[[1]], list(theta = thetaSS, mu =

muSS, rho = rhoSS))

dR0_drho <- substituteDirect(dR0_drho[[1]], list(theta = thetaSS, mu =

muSS, rho = rhoSS))

Create functions that evaluate the derivatives at given temperatures

f_dR0_dtheta <- function(T) attr(eval(dR0_dtheta, list(T_=T)),

"gradient")

f_dR0_dmu <- function(T) attr(eval(dR0_dmu, list(T_=T)), "gradient")

f_dR0_drho <- function(T) attr(eval(dR0_drho, list(T_=T)), "gradient")

Calculate the contributions of theta (development), mu (mortality),

and rho (encounter rate) to dR0/dT

diffR0_dT <- f_dR0SS_dT(TT)

Cont_theta <- f_dR0_dtheta(TT)*f_dthetaSS_dT(TT)

Cont_mu <- f_dR0_dmu(TT)*f_dmuSS_dT(TT)

Cont_rho <- f_dR0_drho(TT)*f_drhoSS_dT(TT)

9

Plotting the figures ---

xticks <- seq(minTemp, maxTemp, 10)

xticklabels <- xticks-273.15

legendlabels <- c(expression(italic(R[0])),

 expression(paste("development rate ", theta, sep =

"")),

 expression(paste("mortality rate ", mu, sep = "")),

 expression(paste("encounter rate ", rho, sep = "")))

cols <- c("black", "blue", "red", "green")

curve(f_dR0SS_dT(x), minTemp, maxTemp, xlab = "", ylab = "", xaxt =

"n", col = cols[1])

curve(f_dR0_dtheta(x)*f_dthetaSS_dT(x), minTemp, maxTemp, lty=2,

col=cols[2], add=T)

curve(f_dR0_dmu(x)*f_dmuSS_dT(x), minTemp, maxTemp, lty=2,

col=cols[3], add=T)

curve(f_dR0_drho(x)*f_drhoSS_dT(x), minTemp, maxTemp, lty=2,

col=cols[4], add=T)

axis(1, at = xticks, labels = xticklabels)

title(xlab = "Temperature (°C)",

 ylab =

expression(partialdiff*italic(R[0])/partialdiff*italic(x)%*%italic(d*x

)/italic(d*T)))

legend("topright", legend = legendlabels, col = cols, lty =

c(1,2,2,2), cex = 0.75)

10

S3.2 – R-code for the perturbation analyses approach of R0(T) suggested in Section 3.1 (Fig. 6)

Elasticity analyses of R0(T) with respect to the two metrics (AUC,

skewness) in section 3.1. This code reproduces Figure 6 of the

article, that is, it calculates the relative change in the area

under the curve and skewness of R_0(T) for a proportional change in

the activation energies, inactivation energies, and baseline

performance values of the Sharpe-Schoolfield models for the

performance traits that underlie R0(T).

Parameter settings ---

minTemp <- 273.15 # setting min and max temperatures for simulations

maxTemp <- 318.15

resol <- 0.01

TT <- seq(minTemp, maxTemp, resol) # temperature vector for

 # calculations

theta0 <- 0.03; mu0 <- 0.06; rho0 <- 0.01 # baseline parameters

E_theta <- 0.65; E_mu <- 0.65; E_rho <- 0.65

T0_theta <- 295.65; T0_mu <- 295.65; T0_rho <- 295.65

T0_thetaL <- 283.15; T0_muL <- 283.15; T0_rhoL <- 283.15

T0_thetaH <- 308.15; T0_muH <- 308.15; T0_rhoH <- 308.15

E_thetaL <- -3.25; E_muL <- -3.25; E_rhoL <- -3.25;

E_thetaH <- 3.25; E_muH <- 3.25; E_rhoH <- 3.25;

k <- 8.62*10^(-5) # Boltzmann’s constant

Create the elasticity matrices. The number of columns corresponds

to the number of parameters, and the number of rows is the number

of relative differences to be tested (here, 0%, -20%, +20%)

Elast_Skew <- matrix(0, nrow = 3, ncol = 12)

Elast_AUC <- matrix(0, nrow = 3, ncol = 12)

Set a vector containing the original parameter values

Base_Params_Orig <- c(theta0, E_theta, E_thetaL, E_thetaH, mu0, E_mu,

E_muL, E_muH, rho0, E_rho, E_rhoL, E_rhoH)

Define the vector of relative differences in parameter values that

will be tested

Perc_change <- c(1, 0.8, 1.2)

11

Definition of SS-models for development (theta), mortality (mu),

encounter rate (rho), and the resulting R0(T) (cf. eqn 3; the

temperature-independent constant C is ignored as it cancels out in

the elasticity analyses)----------------------------

R0_fun <- function(Temp, Pars) {

 theta_SS <- Pars[1] * exp(-Pars[2]/k * (1/Temp-1/T0_theta)) *

(1+exp(Pars[3]/k * (-1/Temp+1/T0_thetaL)) + exp(Pars[4]/k *

(-1/Temp+1/T0_thetaH)))^(-1)

 mu_SS <- Pars[5] * exp(-(Pars[6]/k) * (1/Temp - 1/T0_mu)) *

(1+ exp(Pars[7]/k * (-1/Temp+1/T0_muL)) + exp(Pars[8]/k *

(-1/Temp+1/T0_muH)))

 rho_SS <- Pars[9] * exp(-(Pars[10]/k) * (1/Temp - 1/T0_rho)) *

(1+ exp(Pars[11]/k * (-1/Temp+1/T0_rhoL)) + exp(Pars[12]/k *

(-1/Temp+1/T0_rhoH)))^(-1)

 R0_SS <- theta_SS/(mu_SS + theta_SS)*rho_SS/(mu_SS+rho_SS)

 return(R0_SS)

}

Calculating the relative changes in R_0 for each parameter variation

for (i in 1:length(Base_Params_Orig)) {

 for (j in 1:length(Perc_change)) {

 Base_Params <- Base_Params_Orig

 # Change parameter i in the parameters vector

 Base_Params[i] <- Base_Params[i]*Perc_change[j]

 # Calculate the new R_0 for all temperatures

 R0_SS <- R0_fun(TT, Base_Params)

 # Determine at which temperature the maximum R0 is reached

 max_index <- which.max(R0_SS)

 T_pk <- TT[max_index]

 # Calculate the value of the 2 objective functions (skewness, AUC)

 skew = (T_pk-T0_thetaL)/(T0_thetaH-T0_thetaL)

 AUC1 = integrate(R0_fun, minTemp, maxTemp, Pars =

 Base_Params)$value

 if (j == 1) {

 Elast_Skew[j, i] <- skew

 Elast_AUC[j, i] <- AUC1

 } else {

 Elast_Skew[j, i] <- skew/Elast_Skew[1, i]-1

 Elast_AUC[j, i] <- AUC1/Elast_AUC[1, i]-1

 }

 }

}

12

Plotting the Figures ---

Create a matrix for each of the second and third row in the

elasticity matrices. This is needed for the barplots.

EA1 <- t(array(Elast_AUC[2,],c(4,3)))

EA2 <- t(array(Elast_AUC[3,],c(4,3)))

ES1 <- t(array(Elast_Skew[2,],c(4,3)))

ES2 <- t(array(Elast_Skew[3,],c(4,3)))

AUC_yrange <- c(min(EA1, EA2), max(EA1, EA2))

Skew_yrange <- c(min(ES1, ES2), max(ES1, ES2))

Par_labels <- expression(italic(y[0]),

 italic(E),

 italic(E[L]),

 italic(E[H]))

legendlabels <- expression(paste("development rate ", theta, sep =

""),

 paste("mortality rate ", mu, sep = ""),

 paste("encounter rate ", rho, sep = ""))

plotcolors <- topo.colors(3)

barplot(EA1, ylim = AUC_yrange , names.arg = Par_labels, beside = T,

col = plotcolors, ylab = "Relative change in AUC")

barplot(EA2, beside = T, add=T, col = plotcolors, density = 15)

legend("topright", legend = legendlabels, fill = plotcolors, cex =

0.75)

barplot(ES1, ylim = Skew_yrange, names.arg = Par_labels, beside = T,

col = plotcolors, ylab = "Relative change in Skewness")

barplot(ES2, beside = T, add=T, col = plotcolors, density = 15)

legend("topright", legend = legendlabels, fill = plotcolors, cex =

0.75)

13

Appendix S4. Case study in SS model fitting using Schistosoma mansoni cercaria activity data

Here, we provide a detailed case study showing how to fit the SS model to thermal performance
data (here, cercaria swimming speed), following the maximum likelihood approach of Régnière
et al. (2012) and implementing it in R (R Development Core Team, 2014).

S4.1 – Study species

The trematode parasite Schistosoma mansoni is the most widespread parasitic agent of human
schistosomiasis (Colley et al., 2014). The parasite has a two-host life cycle, where free-swimming
cercariae seek out humans after being released from the intermediate host snail Biomphalaria
glabrata (Colley et al., 2014) (Fig. 1C, D). We conducted an experiment to quantify the
temperature dependence of S. mansoni cercaria swimming speed as a proxy for parasite
metabolism. The methods for data collection are provided in Section S4.2, and the data fitting
procedures are detailed in the subsequent sections.

S4.2 – Experimental design and data collection

S. mansoni-infected B. glabrata snails were obtained from the Schistosomiasis Resource Center
(BEI Resources, NIAID, NIH). Snails were maintained at room temperature (22 C) in artificial spring
water (Cohen et al., 1980) with a 12:12 hour photoperiod, Snails were fed ad libitum a
combination of frozen spinach and “snail jello”, which is an agar preparation that includes calcium
powder and ground Tetramin™ fish flakes (Paull et al., 2015). Prior to cercaria collection, five
infected snails were moved to a temperature-controlled Styrofoam incubator (Raffel et al., 2013)
and were maintained there at 22 C for one week. Two days prior to the experiment (day 6 of
acclimation), a wooden panel was placed over the clear lid of the incubator to maintain complete
darkness (0:24 photoperiod) for the remaining 2 days. Snails were then placed under a bright LED
light for 1 hour to encourage cercaria release. S. mansoni cercariae were collected and
fluorescently stained with a fluorescently-labeled fatty acid analogue (BODIPY FL C12; Invitrogen,
Carlsbad, CA, USA) following the protocol of LaFonte et al. (2015). The experiment was conducted
in two temporal blocks. All cercariae were observed within 3 hours of release from the snail
(n=49). The order in which cercariae were exposed to temperature treatments was randomized
within temporal blocks to account for potential changes in cercariae viability throughout the day.

Individual cercaria were then pipetted into the depression on the underside of a specimen
cup with approximately 5 µL of 22 C artificial spring water (Fig. S3). The lid was then floated for
five minutes in 250 mL of water, maintained at one of eight temperatures (13, 16, 19, 22, 25, 28,
31, 34 C) to ensure that the water in the depression containing the cercaria had reached and
stayed at the target temperature. We verified that this timing was sufficient using an infrared
thermometer prior to the experiment. Each cercaria was viewed under a fluorescent
stereomicroscope (Leica MZ10F, Leica Microsystems, Wetzler, Germany) fitted with a color
digital video camera (Leica DFC450C, Leica Microsystems, Wetzler, Germany). Video recordings
of cercaria activity were obtained using the MicroManager software (Edelstein et al., 2014)
interacting with VirtualDub screen capture software (www.virtualdub.org). Cercaria swimming
speed was quantified by tracking the position of each cercaria’s tail base throughout each video
and calculating the velocity between successive points in millimeters per second (mm·sec-1).

14

S4.3 – Loading and plotting data

The following code loads the experimental data (performance temperature, cercaria swimming
speeds, temporal block) into the R console and creates a dataframe named “myData”.

#Experimental performance temperatures (°C)

PerfTemp <- c(22, 22, 19, 19, 22, 19, 25, 13, 13, 25, 25, 16, 31, 16, 16, 31,

31, 34, 34, 28, 28, 28, 34, 34, 34, 28, 34, 28, 34, 34, 28, 31, 16, 31,

16, 16, 31, 19, 19, 22, 22, 19, 25, 13, 13, 25, 13, 13, 25)

#Cercaria swimming speeds (mm/sec)

Velocity <- c(0.833, 0.209, 0.201, 0.115, 0.183, 0.143, 0.611, 0.165,

 0.199, 0.597, 0.416, 0.097, 0.208, 0.292, 0.159, 0.370, 0.228, 0.152,

 0.178, 0.502, 0.516, 0.480, 0.270, 0.191, 0.255, 0.508, 0.248, 0.585,

 0.215, 0.115, 0.601, 0.165, 0.181, 0.268, 0.289, 0.122, 0.241, 0.173,

 0.194, 0.180, 0.369, 0.406, 0.281, 0.198, 0.302, 0.449, 0.208, 0.052,

 0.417)

#Temporal blocks in the experiment

#Random effects must be entered as numeric vectors for this model formulation

BlockReal <- c(1,

1, 1, 1, 2,

2, 2, 2, 2)

myData <- as.data.frame(cbind(PerfTemp,Velocity))

myData$PerfTemp <- as.double(PerfTemp) #numeric variable

myData$Velocity <- as.double(Velocity) #numeric variable

These data can now be plotted using

plot(PerfTemp,Velocity)

Note that the data clearly extend beyond Tpk, capturing the high-temperature inactivation (Fig.
7B). We therefore proceed with fitting the SS model to these thermal performance data, and not
the simpler BA-model, which is unable of capturing these nonlinearities.

S4.4 – Fitting the Sharpe-Schoolfield (SS) model to thermal performance data using maximum
likelihood

Our dataset did not include temperatures close enough to the critical thermal minimum of S.
mansoni, so we could not estimate the low-temperature inactivation energy (EL) or the
corresponding threshold (TL). We therefore simplified the SS model by omitting these terms (i.e.
setting TL=0 K) and describe the temperature-dependence of cercaria performance p(T) within
the experimental temperature range using

(S3) 𝑝(𝑇) = 𝑝0𝑒
−

𝐸

𝑘
(

1

𝑇
−

1

𝑇0
)

∙ [1 + 𝑒
𝐸𝐻

𝑘
(

1

𝑇𝐻−
1

𝑇
)
]

−1

.

15

The following code implements the maximum likelihood approach of Régnière et al. (2012) in R,
estimating the activation energy (E), high-temperature inactivation energy (EH) and temperature
threshold (TH) of cercaria swimming speed.

#Define constants

k <- 8.62*10^(-5) #Boltzmann's constant

K <- 273.15 #Celsius to Kelvin conversion

To <- 19 + K #Standardization temperature

#Log-likelihood function to be optimized, assuming a log-normal error

#distribution (after Régnière et al., 2012)

SSmodel <- function(data, par){

 s_epsilon <- par[1]

 pTo <- par[2]

 E <- par[3]

 Th <- par[4]

 Eh <- par[5]

 se2 <- (-0.5)*s_epsilon^2 #mean of the normally distributed variable

 #‘epsilon’ below (Régnière et al., 2012)

 x <- data[,1]+K

 y <- data[,2]

 expected <- pTo*exp(-(E/k*(1/x-1/To)))*(1+exp(Eh/k*(1/Th-1/x)))^-1

 epsilon <- log(y/expected) #note that errors are calculated as

 #ratios, not differences

 p <- dnorm(epsilon,se2,s_epsilon)

 for (i in 1:length(p)){

 if(p[i] < 1e-10) p[i] <- 1e-10 #prevents log(0) computation errors

 }

 LL<- sum(log(p))

 -LL

}

#’Reasonable’ initial parameter estimates to ensure convergence of the

#optimization procedure

init <- c(s_epsilon= 0.1, pTo= 0.2, E= 0.65, Th= 303, Eh= 3.5)

#Set parameter lower and upper parameter boundaries

lower <- c(0, 0, 0, 0, 0)

upper <- c(Inf, Inf, Inf, Inf, Inf)

#Optimize full model for all parameters

model <- optim(par= init, fn= SSmodel, data= myData,

 method= "L-BFGS-B", lower= lower, upper= upper, hessian=TRUE)

model #view model output

#Output optimized model coefficients and their 95% confidence intervals

Coef <- model$par

SE <- sqrt(diag(solve(model$hessian))) #SE for parameter estimates

Value <- SE*1.96 #95% confidence intervals for estimates

16

cbind(Coef, Value)

#Table of model parameter estimates and the value to calculate 95% confidence

#intervals (Coef +/- Value)

Coef Value

#s_epsilon 0.4197777 0.08310917

#pTo 0.2703667 0.04715787

#E 0.6984673 0.29862724

#Th 303.4948870 2.91925910

#Eh 3.2046242 1.32339403

#Plot the optimized model function over data (Fig. 7B, solid black line).

plot(PerfTemp, Velocity) #plot data

cercSwim <- function(x, pTo, E, Eh, Th){

 y = pTo*exp(-(E/k*(1/x-1/To)))*(1+exp(Eh/k*(1/Th-1/x)))^-1

}

LineTemps <- seq(13, 34, length= 100) + K

PredictionsDnorm <- cercSwim(x= LineTemps, pTo= 0.270 , E= 0.698 , Eh= 3.205

, Th= 303.5)

lines(LineTemps-K, PredictionsDnorm) #plot optimized SS model

The optimized parameter values of the SS-model and their confidence intervals are provided in
the table above, and the model fit to data is shown in Fig. 7B. Our parameter estimates
conformed closely to a priori expectations based on the interspecific means of activation energies
(E = 0.65 eV; Gillooly et al., 2001; Brown et al., 2004) and inactivation energies (EH = 5 × 0.65 eV
= 3.25 eV; Molnár et al., 2013), although we note that this need not be the case in general (Section
2). However, our estimate of the high-temperature inactivation threshold TH = 303.49 ± 2.92 K (=
30.34 ± 2.92 C) for cercaria swimming speed was nearly 15 C lower than the literature estimate
of CTmax = 45 C for S. mansoni (Lawson & Wilson, 1980). This is probably because our measure of
parasite performance differed from that assessed by Lawson and Wilson (1980), who measured
the temperature needed to induce 100% cercaria mortality. Schistosome cercariae use
temperature as one way of detecting definitive hosts, and they might interpret environmental
temperatures similar to that of their definitive host’s body temperature (37 C) as an indication
that a definitive host is nearby (Colley et al., 2014). For this reason, temperatures greater than
37 C might induce a behavioral response in which cercariae stop swimming and shed their tails
in preparation to penetrate a definitive host (Colley et al., 2014). Indeed, during this experiment
we frequently observed S. mansoni cercariae that stopped swimming and began crawling along
the cup surface in the high temperature treatments (31 and 34 C), supporting this interpretation.

S4.5 – Adding a random effect to the SS model with log-normal error structure

In this final section, we modify the R code from Section S4.4 to allow for the addition of potential
random effects in the sampling design. Such random effects may, for example, arise when
experiments are conducted on individuals originating from separate source populations, when
individuals have differing thermal histories, or when experiments are conducted in multiple
temporal blocks or incubators. Régnière et al. (2012) showed how to incorporate a random effect
into the likelihood function of the SS model, and provide example SAS code. The primary change
to the previous code is the addition of a new parameter, s_upsilon, which represents the

17

standard deviation of the population means. For example, in an experiment with multiple blocks,
this parameter would describe the standard deviation of the block means.

Our experiment with S. mansoni cercariae was conducted in 2 temporal blocks (cf.
variable BlockReal in S4.3). However, model optimization showed that the random effect of
block was negligible (s_upsilon < 0.0001) in our data1. A block effect so small is difficult to
evaluate statistically and can make the model unstable, because the likelihood function
approaches infinity as s_upsilon approaches zero. We therefore created an artificial blocking
variable BlockFake) for demonstration purposes, where each data point was assigned to
BlockFake = 1 if swimming speed was lower than the mean swimming speed at that performance
temperature, and to BlockFake = 2 if it was higher (Figure S4).

#Artificial (fake) blocking variable for demonstration purposes

BlockFake <- c(2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1,

1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2,

1, 1)

myData2 <- as.data.frame(cbind(PerfTemp,Velocity,BlockFake))

myData2$PerfTemp <- as.double(PerfTemp) #numeric

myData2$Velocity <- as.double(Velocity) #numeric

#Modified maximum likelihood approach, including a random effect:

#define constants

k <- 8.62*10^(-5) #Boltzmann’s constant (eV/K)

K <- 273.15 #Celsius to Kelvin conversion

To <- 19 + K #Standardization temperature (arbitrary)

SSmodelrandom <- function(data, par){

 s_epsilon <- par[1]

 s_upsilon <- par[2]

 pTo <- par[3]

 E <- par[4]

 Th <- par[5]

 Eh <- par[6]

1 Optimizing this model with the real temporal block variable (BlockReal) required precise selection
of initial parameter estimates and a more forgiving optimization method to achieve model
convergence, due to the negligibly small magnitude of the random effect (s_upsilon ≈ 2.0 × 10-9).
The traditional “optim” function only has one available method for bounded parameter
optimization (“L-BFGS-B”). To estimate s_upsilon for the BlockReal effect, we used the updated
“optimx” function (package optimx) which allows bounded parameter estimation using the robust
“spg” method (Nash & Varadhan, 2011; Nash, 2014). Such a small s_upsilon is problematic because
the likelihood function approaches infinity as s_upsilon approaches zero (Régnière et al., 2012),
leading to inflated likelihood values and thus potentially inaccurate estimates for other parameters.
It is often easier to achieve model convergence with a simpler model (in this case, the earlier model
with no random effect), and this can be a good way to refine starting values for more complex
models that might have more trouble converging. In this case, plotting the data also helped to
reveal the negligible difference between blocks, leading us to try out the smaller starting values for
s_upsilon that ultimately led to model convergence.

18

 se2 <- (-0.5)*s_epsilon^2

 x <- data[,1]+K; y <- data[,2]; Block <- data[,3]

 expected <- pTo*exp(-(E/k*(1/x-1/To)))*(1+exp(Eh/k*(1/Th-1/x)))^-1

 data <- cbind(data, expected)

 upsilon <- numeric(length(x))

 for (j in 1:max(Block)){

 #upsilon_j is the mean deviation from expected for treatment j

 upsilon_j <- mean(subset(data, Block==j)[,2]/subset(data,

 Block==j)[,4])

 #insert each datapoint's upsilon value into the dataframe

 for (i in 1:length(x)){

 if (Block[i]==j) upsilon[i] <- upsilon_j

 }

 }

 epsilon <- log(y/(expected*upsilon)) #See Régnière et al. 2012

 if(s_upsilon < 1e-20) s_upsilon <- 1e-20 #helps prevent NaN's

 if(s_epsilon < 1e-5) s_epsilon <- 1e-5

 p1 <- dnorm(upsilon, mean= 1, sd= s_upsilon)

 p2 <- dnorm(epsilon, mean= se2, sd= s_epsilon)

 for (i in 1:length(p1)){ #helps prevent NaN's

 if(p1[i] < 1e-5) p1[i] <- 1e-5

 if(p2[i] < 1e-5) p2[i] <- 1e-5

 }

 LL <- sum(log(p1*p2))

 return(-LL)

}

#Initial parameter estimates and boundaries for parameter search space

init <- c(s_epsilon= 0.4, s_upsilon= 0.5, pTo= 0.2704665,

 E= 0.697644, Th= 303, Eh= 3.2059197)

lower <- c(0, 0, 0, 0, 0, 0)

upper <- c(Inf, Inf, Inf, Inf, Inf, Inf)

#Optimize full model for all parameters

model <- optim(par= init, fn= SSmodelrandom, data= myData2,

 method= "L-BFGS-B", lower= lower, upper= upper, hessian=TRUE)

model

#Output optimized model coefficients and their standard errors

coef <- model$par

SE <- sqrt(diag(solve(model$hessian))) #SE for parameter estimates

Value <- SE*1.96 #95% confidence intervals

cbind(coef,Value)

19

#Table of model parameter estimates and the value to calculate 95% confidence

#intervals (Coef +/- Value)

coef Value

s_epsilon 0.2923503 0.05986718

s_upsilon 0.2872339 0.05993339

pTo 0.3010968 0.03805723

E 0.6950091 0.22658316

Th 303.2161098 2.26526098

Eh 3.0731122 0.91245373

#Plot model

#subset the blocks

blockL <- subset(myData2,BlockFake=="1")

blockH <- subset(myData2,BlockFake=="2")

plot(blockH$PerfTemp,blockH$Velocity,

 pch=1,col='red',ylim=c(0,1), , bty="l",

 xlab="Temperature (C)", ylab="Cercaria swimming speed (mm/sec)")

points(blockL$PerfTemp,blockL$Velocity,pch=16,col='blue')

LineTemps<-seq(13,35,length=100)+K

Predictions<-cercSwim(x=LineTemps, pTo= 0.301 , E= 0.695 , Eh= 3.073 , Th=

303.216) #full model predictions

PredictionsHigh<-Predictions+(Predictions*.287) #high block predictions

PredictionsLow<-Predictions-(Predictions*.287) #low block predictions

lines(LineTemps-K, PredictionsHigh, lwd=2, lty=3,col='red')

lines(LineTemps-K, PredictionsLow,lwd=2, lty=2,col='blue')

Including this artificial (fake) random effect, maximum likelihood estimated s_epsilon = 0.292 ±
0.060 mm·sec-1 and s_upsilon = 0.287 ± 0.060 mm·sec-1, showing that the block effect
accounted for about half of the random error in this dataset as expected. The remaining
parameter estimates were similar to those obtained without a random effect (p0 = 0.301 ± 0.038
mm·sec-1; E = 0.695 ± 0.227 eV; TH = 303.22 ± 2.27 K [= 30.07 ± 2.27 C]; EH = 3.073 ± 0. 912 eV).

20

Figure S3. Photograph of the specimen cup lids used in the cercaria swimming speed experiment. Arrow
indicates the depression used to contain individual cercaria during video capture. Metric ruler included
for scale.

21

Figure S4. Visualization of the artificially created (fake) block effect on the S. mansoni cercariae swimming
speed experimental data. Blue, closed circles represent swimming speeds below the mean swimming
speed at that temperature (Block 1), and red, open circles represent swimming speed above the mean
speed at that temperature (Block 2). The best-fitting SS-model that accounts for this block effect (Block 1:
blue dashed curve; Block 2: red dotted curve) was estimated using the code in S4.5.

22

Literature Cited for Supporting Information:

Anderson, R. M. and R. M. May. 1978. Regulation and stability of host-parasite population

interactions: I. Regulatory processes. Journal of Animal Ecology 47: 219-247.

Anderson, R. M. and R. M. May. 1991. Infectious diseases of humans: Dynamics and control.

Oxford Science Publications, Great Britain, 757 p.

Braner, M. and N. G. Hairston. 1989. From cohort data to life table parameters via stochastic

modeling. In Estimation and analysis of insect populations, L. L. McDonald, B. F. J. Manly,

J. A. Lockwood, and J. A. Logan (eds.). Springer-Verlag, Berlin, p. 81-92.

Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage and G. B. West. 2004. Toward a metabolic

theory of ecology. Ecology 85: 1771-1789.

Cohen, L. N., H. Neimark and L. K. Eveland. 1980. Schistosoma mansoni: response of cercariae to

a thermal gradient. Journal of Parasitology 66: 362-364.

Colley, D. G., A. L. Bustinduy, E. Secor and C. H. King. 2014. Human schistosomiasis. Lancet 383:

2253-2264.

Edelstein, A. D., M. A. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale and N. Stuurman. 2014.

Advanced methods of microscope control using µManager software. Journal of Biological

Methods 1: e11.

Gillooly, J. F., J. H. Brown, G. B. West, V. M. Savage and E. L. Charnov. 2001. Effects of size and

temperature on metabolic rate. Science 293: 2248-2251.

Hurford, A., D. Cownden and T. Day. 2010. Next-generation tools for evolutionary invasion

analyses. Journal of the Royal Society Interface 7: 561-571.

Keeling, M. J. and P. Rohani. 2008. Modeling infectious diseases in humans and animals.

Princeton University Press, Princeton, N.J., 366 p.

23

LaFonte, B. E., T. R. Raffel, I. N. Monk and P. T. J. Johnson. 2015. Quantifying larval trematode

infections in hosts: A comparison of method validity and implications for infection

success. Experimental Parasitology 154: 155-162.

Lawson, J. R. and R. A. Wilson. 1980. The survival of the cercariae of Schistosoma mansoni in

relation to water temperature and glycogen utilization. Parasitology 81: 337-348.

Molnár, P. K., S. J. Kutz, B. M. Hoar and A. P. Dobson. 2013. Metabolic approaches to

understanding climate change impacts on seasonal host-macroparasite dynamics.

Ecology Letters 16: 9-21.

Nash, J. C. 2014. On best practice optimization methods in R. Journal of Statistical Software 60:

1-14.

Nash, J. C. and R. Varadhan. 2011. Unifying optimization algorithms to aid software system users:

optimx for R. Journal of Statistical Software 43: 1-14.

Paull, S. H., T. R. Raffel, B. E. LaFonte and P. T. J. Johnson. 2015. How temperature shifts affect

parasite production: testing the roles of thermal stress and acclimation. Functional

Ecology 29: 941-950.

R Development Core Team. 2014. R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria.

Raffel, T. R., J. M. Romansic, N. T. Halstead, T. A. McMahon, M. D. Venesky and J. R. Rohr. 2013.

Disease and thermal acclimation in a more variable and unpredictable climate. Nature

Climate Change 3: 146-151.

24

Régnière, J., J. Powell, B. Bentz and V. Nealis. 2012. Effects of temperature on development,

survival and reproduction of insects: Experimental design, data analysis and modeling.

Journal of Insect Physiology 58: 634-647.

