
1 
 

Supporting Information 

for 

Thermal performance curves and the Metabolic Theory of Ecology – a practical 

guide to models and experiments for parasitologists 

 

Péter K. Molnár, Jason P. Sckrabulis, Karie A. Altman, Thomas R. Raffel 

 

CONTENT: 

Appendix S1. Derivation on an Anderson-May-type host-parasite model for a specialist 

nematode with an endotherm definitive host and a mandatory free-living stage during which 

larvae develop to infectivity (p. 2) 

Appendix S2. Why apparent development time is more temperature-sensitive than real 

development time (p. 4). 

………….Figure S1 Why apparent development time is more temperature-sensitive than real 

 development time (p. 5) 

Appendix S3. The ‘classical approach to perturbation analyses of R0(T), and R-codes for both the 

classical approach and the new approach suggested in Section 3.1 (p. 6). 

………….Figure S2 Perturbation analyses of an MTE-parameterized null model for a nematode with 

 an endotherm host, a mandatory free-living stage, and active host infection (cf. Fig. 3), 

 but now using the ‘classical approach’ of determining the additive contribution of 

 development (θ), mortality (µ), and host encounter (ρ) to the temperature sensitivity of 

 R0(T), dR0/dT  (p. 6). 

………….Appendix S3.1: R-code Figure S2 (‘classical approach’) (p. 7). 

………….Appendix S3.2: R-code Figure 6 (‘new approach’) (p. 10). 

Appendix S4. Case study in SS model fitting using Schistosoma mansoni cercaria activity data (p. 

13). 

………….Figure S3 Specimen cup lids used in swimming speed experiment (p. 20) 

………….Figure S4 Visualization of the artificially created block effect on the S. mansoni cercariae 

 swimming speed experimental data (p. 21) 

Literature Cited for Supporting Information (p. 22).  



2 
 

Appendix S1. Anderson-May-type model for the host-parasite dynamics of a one-nematode-

one-endotherm-host system (Fig. 1B). 

In this Appendix, we specify a dynamic host-parasite model for the one-nematode-one-

endotherm-host dynamics shown in Figure 1B. Here, adult parasites reside within the endotherm 

host and produce transmission stages that pass out of the host into the environment. Free-living 

larvae then need to pass through one or more developmental stages before they become 

infective and can be taken up again by the host. All transition rates may hereby depend on 

temperature if they occur outside the definitive host, but are assumed temperature-independent 

otherwise due to host endothermy (Fig. 1B). Following the classical framework of Anderson & 

May, we obtain a set of coupled differential equations that explicitly track the abundance of 

hosts, (H), adult parasites within hosts (P), and free-living uninfective (LU) and infective (LI) larvae 

as a function of temperature (T) through time (t) (Anderson & May, 1978; Molnár et al., 2013);  
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Here, λP represents the per capita rate of parasite birth; µU(T) and µI(T) are the stage- and 

temperature-dependent per capita rates of parasite mortality; θU(T) is the temperature-

dependent per capita development rate of uninfective parasite larvae to the infective stage; 

ρH(T)H is the rate at which an infective larva encounters hosts (temperature-dependent for 

parasites that actively seek out host, and temperature-independent otherwise); qH is the 

probability that a parasite establishes within its host following uptake;  bH and dH are the rates of 

host birth and natural host death; βP and δP quantify the effect of the parasite on host fecundity 

and death; and j describes the degree of parasite aggregation within the host population 

assuming a negative binomial distribution. Seasonal variability and potential range changes are 

ignored in this model for simplicity, but the model could easily be extended with these and other 

processes for more detailed analyses (Anderson & May, 1991; Keeling & Rohani, 2008).  

 R0(T), defined as the temperature-dependent expected lifetime reproductive output of a 

newborn larva in the absence of density-dependence (Anderson & May 1991), is then calculated 

as the dominant eigenvalue of the temperature-dependent next-generation matrix, N(T), of 

equations S1 (Hurford et al., 2010). Here, N(T) = F(T)V(T)-1  with 
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Appendix S2. Why apparent development time is more temperature-sensitive than real 

development time 

In this Appendix, we consider the development of uninfective free-living larvae to infectivity (Fig. 

1B; stage LU to LI), and show that estimates of the activation energy of observed (apparent) 

development times, Eθ’, will systematically overestimate the true activation energy of 

development, Eθ, due to a failure to account for the influence of mortality. 

 First, we note that the observed (apparent) distribution of development times will 

underestimate the actual distribution of development times in any cohort experiment if mortality 

is not accounted for (Braner & Hairston, 1989). More specifically, it can be shown that the 

difference between the true and apparent means of development time, M and M‘, equals the 

product of the variance in development time, σ2, and the mortality rate, µ, if development times 

are normally distributed (Braner & Hairston, 1989) (Fig. S1A): 

(S2)  2MM  . 

As this difference increases with increasing temperatures (due to the temperature-dependence 

of the mortality rate, µ(T)), estimates of Eθ’ (apparent activation energy of development, based 

on M‘(T)) will always overestimate the true activation energy of development Eθ (which needs 

to be estimated from the true development means, M(T); Fig. S1B,C). 
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Figure S1. Why apparent development time is more temperature-sensitive than real 
development time. (A) The relationship between apparent and real development. Number of 
individuals maturing as a function of time when development time is normally distributed, 
without (=real development; black line) and with mortality (=apparent development; blue line). 
Vertical lines mark the mean development time without (M) and with (M’ = M – σ2µ) mortality. 
Parameters were set as M = 10 d, σ2 = 10 d2 (variance of development time), and µ = 0.2 d-1 
(mortality rate), implying M’ = 8 d (eqn S2). Redrawn from Braner & Hairston (1989). Panels (B) 
and (C) illustrate why these discrepancies lead to biased (overestimated) activation energies of 
development time if these estimates are based on apparent development time. In both panels 
we assume that development time is normally distributed with a mean M(T) that is temperature-
sensitive according to the BA equation with activation energy Eθ = 0.55 eV, variance σ2 = 10 d2, 
and a baseline development time of 1/θ0 = 40 d at T0 = 20 C (black line). Furthermore, we assume 
that mortality rates also follow a BA equation with Eµ = 0.55 eV (panel B) or Eµ = 0.20 eV (panel 
C), and a baseline mortality of µ = 0.5 d-1 at T0 = 20 C. Adding -σ2µ(T) (red lines) to M(T) yields 
apparent development times as a function of temperature, M’(T) (eqn 5; blue crosses). Fitting a 
BA curve (eqn 1) to these simulated data (blue lines) yields activation energies Eθ’ that 
overestimate the true activation energy of development Eθ, essentially because the contributions 
of mortality and developmental variance (red lines) lead to steeper temperature-dependencies 
in apparent development times (blue crosses) than in true development times (black line). This 
effect becomes stronger as mortality becomes more temperature-sensitive (contrast panels B & 
C; c.f. Fig. 5). 
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Appendix S3. The ‘classical approach to perturbation analyses of R0(T) (Fig. S2), and R-codes for 

both the classical approach and the new approach suggested in Section 3.1  

 

 

Figure S2. Perturbation analyses of an MTE-parameterized null model for a nematode with an endotherm 

host, a mandatory free-living stage, and active host infection (cf. Figs. 1, 3), but now using the ‘classical 

approach’ of determining the additive contributions of development (θ), mortality (µ), and host encounter 

(ρ) to the temperature sensitivity of R0(T), dR0/dT. The additive contributions of each of these parameters 

are hereby calculated using the chain rule of partial derivatives, i.e. dR0/dT = ∂R0/∂θ*dθ/dT + 

∂R0/∂µ*dµ/dT + ∂R0/∂ρ*dρ/dT. Black curve: sensitivity of R0(T) to temperature, dR0/dT; blue 

(development), red (mortality), and green (encounter) curves show the additive contribution of each trait 

to this temperature-sensitivity (i.e. ∂R0/∂x*dx/dT). Baseline parameters of development (θ), mortality (µ) 

and encounter (ρ) rates are set as in Fig. 3: θ0 = 0.03 d-1, µ0 = 0.06 d-1, ρ0 = 0.01 d-1 at T0 = 22.5 C, and               

E = 0.65 eV, -EL = EH = 3.25 eV, TL = 10 C, TH = 35 C for all three traits. 
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S3.1 – R-code for the ‘classical approach’ to perturbation analyses of R0(T) (Fig. S2) 

# The ‘classical approach’ to elasticity analyses of R0(T). This code  

# reproduces Fig S2 of the article, that is, it decomposes the  

# derivative of R0 w.r.t. temperature T, into its partial derivative 

# w.r.t to the performance traits development, mortality, encounter 

# rate, using the chain rule of partial derivations. 

 

# Parameter settings ------------------------------------------------- 

 

minTemp <- 273.15   # setting min and max temperatures for simulations 

maxTemp <- 318.15 

resol <- 0.01 

TT <-  seq(minTemp, maxTemp, resol) 

 

theta0 <- 0.03; mu0 <- 0.06; rho0 <- 0.01      # baseline parameters  

E_theta <- 0.65; E_mu <- 0.65; E_rho <- 0.65 

T0_theta <- 295.65; T0_mu <- 295.65; T0_rho  <- 295.65 

T0_thetaL <- 283.15; T0_muL <- 283.15; T0_rhoL <- 283.15 

T0_thetaH <- 308.15; T0_muH <- 308.15; T0_rhoH <- 308.15 

E_thetaL  <- -3.25; E_muL <- -3.25; E_rhoL <- -3.25;  

E_thetaH <- 3.25; E_muH <- 3.25; E_rhoH  <- 3.25;  

k <- 8.62*10^(-5)                              # Boltzmann’s constant 

 

 

# Sharpe-Schoolfield expressions for theta, mu, rho and Ro ----------- 

 

thetaSS <- quote(theta0 * exp(-(E_theta/k) * (1/T_ - 1/T0_theta)) * 

(1+ exp(E_thetaL/k * (-1/T_+1/T0_thetaL)) + exp(E_thetaH/k *         

(-1/T_+1/T0_thetaH)))^(-1)) 

muSS <-  quote(mu0    * exp(-(E_mu   /k) * (1/T_ - 1/T0_mu))    * (1+ 

exp(E_muL /k   * (-1/T_+1/T0_muL))    + exp(E_muH/k    *               

(-1/T_+1/T0_muH)))) 

rhoSS <-  quote(rho0   * exp(-(E_rho  /k) * (1/T_ - 1/T0_rho))   * (1+ 

exp(E_rhoL/k   * (-1/T_+1/T0_rhoL))   + exp(E_rhoH/k   *                 

(-1/T_+1/T0_rhoH)))^(-1)) 

 

R0SS <- quote((rhoSS*thetaSS) / ((muSS + thetaSS) * (muSS + rhoSS))) 

 

# Substitute the SS-models for theta, mu, rho into R0 

R0SS <- substituteDirect(R0SS, list(thetaSS = thetaSS, muSS = muSS, 

rhoSS = rhoSS)) 

 

 

# Derivatives of R0 and SS parameters with respect to temperature ---- 

 

dthetaSS_dT <- deriv(thetaSS, "T_") 

dmuSS_dT <- deriv(muSS, "T_") 

drhoSS_dT <- deriv(rhoSS, "T_") 

dR0SS_dT <- deriv(R0SS, "T_") 
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# Create functions that evaluate the derivatives at given temperatures 

 

f_dthetaSS_dT <- function(T) attr(eval(dthetaSS_dT, list(T_=T)), 

"gradient") 

f_dmuSS_dT <- function(T) attr(eval(dmuSS_dT, list(T_=T)), "gradient") 

f_drhoSS_dT <- function(T) attr(eval(drhoSS_dT, list(T_=T)), 

"gradient") 

f_dR0SS_dT <- function(T) attr(eval(dR0SS_dT, list(T_=T)), "gradient") 

 

# Derivatives of R0 with respect to the performance traits theta, mu,  

# rho ------------------------ 

 

R0 <- quote((rho*theta)/((mu+theta)*(mu+rho))) 

 

dR0_dtheta <- deriv(R0, "theta") 

dR0_dmu <- deriv(R0, "mu") 

dR0_drho <- deriv(R0, "rho") 

 

# Substitute the SS-models for theta, mu and rho into the derivatives 

 

dR0_dtheta <- substituteDirect(dR0_dtheta[[1]], list(theta = thetaSS, 

mu = muSS, rho = rhoSS)) 

dR0_dmu <- substituteDirect(dR0_dmu[[1]], list(theta = thetaSS, mu = 

muSS, rho = rhoSS)) 

dR0_drho <- substituteDirect(dR0_drho[[1]], list(theta = thetaSS, mu = 

muSS, rho = rhoSS)) 

 

# Create functions that evaluate the derivatives at given temperatures 

 

f_dR0_dtheta <- function(T) attr(eval(dR0_dtheta, list(T_=T)), 

"gradient") 

f_dR0_dmu <- function(T) attr(eval(dR0_dmu, list(T_=T)), "gradient") 

f_dR0_drho <- function(T) attr(eval(dR0_drho, list(T_=T)), "gradient") 

 

# Calculate the contributions of theta (development), mu (mortality),  

# and rho (encounter rate) to dR0/dT 

 

diffR0_dT <- f_dR0SS_dT(TT) 

Cont_theta <- f_dR0_dtheta(TT)*f_dthetaSS_dT(TT) 

Cont_mu <- f_dR0_dmu(TT)*f_dmuSS_dT(TT) 

Cont_rho <- f_dR0_drho(TT)*f_drhoSS_dT(TT) 
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# Plotting the figures ----------------------------------------------- 

xticks <- seq(minTemp, maxTemp, 10) 

xticklabels <- xticks-273.15 

legendlabels <- c(expression(italic(R[0])),  

                  expression(paste("development rate ", theta, sep = 

"")),  

                  expression(paste("mortality rate ", mu, sep = "")),  

                  expression(paste("encounter rate ", rho, sep = ""))) 

cols <- c("black", "blue", "red", "green") 

 

curve(f_dR0SS_dT(x), minTemp, maxTemp, xlab = "", ylab = "", xaxt = 

"n", col = cols[1]) 

curve(f_dR0_dtheta(x)*f_dthetaSS_dT(x), minTemp, maxTemp, lty=2, 

col=cols[2], add=T) 

curve(f_dR0_dmu(x)*f_dmuSS_dT(x), minTemp, maxTemp, lty=2, 

col=cols[3], add=T) 

curve(f_dR0_drho(x)*f_drhoSS_dT(x), minTemp, maxTemp, lty=2, 

col=cols[4], add=T) 

 

axis(1, at = xticks, labels = xticklabels) 

title(xlab = "Temperature (°C)",  

      ylab = 

expression(partialdiff*italic(R[0])/partialdiff*italic(x)%*%italic(d*x

)/italic(d*T))) 

legend("topright", legend = legendlabels, col = cols, lty = 

c(1,2,2,2), cex = 0.75) 
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S3.2 – R-code for the perturbation analyses approach of R0(T) suggested in Section 3.1 (Fig. 6) 

# Elasticity analyses of R0(T) with respect to the two metrics (AUC,   

# skewness) in section 3.1. This code reproduces Figure 6 of the         

# article, that is, it calculates the relative change in the area 

# under the curve and skewness of R_0(T) for a proportional change in  

# the activation energies, inactivation energies, and baseline  

# performance values of the Sharpe-Schoolfield models for the  

# performance traits that underlie R0(T). 

 

# Parameter settings ------------------------------------------------- 

 

minTemp <- 273.15   # setting min and max temperatures for simulations 

maxTemp <- 318.15 

resol <- 0.01 

TT <-  seq(minTemp, maxTemp, resol)   # temperature vector for  

        # calculations    

 

theta0 <- 0.03; mu0 <- 0.06; rho0 <- 0.01      # baseline parameters  

E_theta <- 0.65; E_mu <- 0.65; E_rho <- 0.65 

T0_theta <- 295.65; T0_mu <- 295.65; T0_rho  <- 295.65 

T0_thetaL <- 283.15; T0_muL <- 283.15; T0_rhoL <- 283.15 

T0_thetaH <- 308.15; T0_muH <- 308.15; T0_rhoH <- 308.15 

E_thetaL  <- -3.25; E_muL <- -3.25; E_rhoL <- -3.25;  

E_thetaH <- 3.25; E_muH <- 3.25; E_rhoH  <- 3.25;  

k <- 8.62*10^(-5)                              # Boltzmann’s constant 

 

# Create the elasticity matrices. The number of columns corresponds  

# to the number of parameters, and the number of rows is the number  

# of relative differences to be tested (here, 0%, -20%, +20%) 

 

Elast_Skew <- matrix(0, nrow = 3, ncol = 12) 

Elast_AUC <- matrix(0, nrow = 3, ncol = 12) 

 

# Set a vector containing the original parameter values 

 

Base_Params_Orig <- c(theta0, E_theta, E_thetaL, E_thetaH, mu0, E_mu, 

E_muL, E_muH, rho0, E_rho, E_rhoL, E_rhoH) 

 

# Define the vector of relative differences in parameter values that  

# will be tested 

 

Perc_change <- c(1, 0.8, 1.2) 
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# Definition of SS-models for development (theta), mortality (mu),  

# encounter rate (rho), and the resulting R0(T) (cf. eqn 3; the  

# temperature-independent constant C is ignored as it cancels out in  

# the elasticity analyses)---------------------------- 

 

R0_fun <- function(Temp, Pars) { 

  theta_SS <- Pars[1] * exp(-Pars[2]/k * (1/Temp-1/T0_theta)) * 

(1+exp(Pars[3]/k * (-1/Temp+1/T0_thetaL)) + exp(Pars[4]/k *                   

(-1/Temp+1/T0_thetaH)))^(-1) 

  mu_SS <- Pars[5] * exp(-(Pars[6]/k) * (1/Temp - 1/T0_mu)) *        

(1+ exp(Pars[7]/k * (-1/Temp+1/T0_muL))   + exp(Pars[8]/k *            

(-1/Temp+1/T0_muH))) 

  rho_SS <-  Pars[9] * exp(-(Pars[10]/k) * (1/Temp - 1/T0_rho)) *    

(1+ exp(Pars[11]/k * (-1/Temp+1/T0_rhoL)) +  exp(Pars[12]/k *          

(-1/Temp+1/T0_rhoH)))^(-1) 

 

  R0_SS <- theta_SS/(mu_SS + theta_SS)*rho_SS/(mu_SS+rho_SS) 

  return(R0_SS) 

} 

 

# Calculating the relative changes in R_0 for each parameter variation 

 

for (i in 1:length(Base_Params_Orig)) { 

  for (j in 1:length(Perc_change)) { 

    Base_Params <- Base_Params_Orig 

 

    # Change parameter i in the parameters vector 

    Base_Params[i] <- Base_Params[i]*Perc_change[j] 

 

    # Calculate the new R_0 for all temperatures 

    R0_SS <- R0_fun(TT, Base_Params) 

   

    # Determine at which temperature the maximum R0 is reached 

    max_index <- which.max(R0_SS) 

    T_pk <- TT[max_index] 

     

    # Calculate the value of the 2 objective functions (skewness, AUC) 

    skew = (T_pk-T0_thetaL)/(T0_thetaH-T0_thetaL)        

    AUC1 = integrate(R0_fun, minTemp, maxTemp, Pars = 

 Base_Params)$value 

     

    if (j == 1) { 

      Elast_Skew[j, i] <- skew 

      Elast_AUC[j, i] <- AUC1 

    } else { 

      Elast_Skew[j, i] <- skew/Elast_Skew[1, i]-1 

      Elast_AUC[j, i] <- AUC1/Elast_AUC[1, i]-1 

    } 

  } 

} 
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# Plotting the Figures ----------------------------------------------- 

 

# Create a matrix for each of the second and third row in the  

# elasticity matrices. This is needed for the barplots. 

EA1 <- t(array(Elast_AUC[2,],c(4,3))) 

EA2 <- t(array(Elast_AUC[3,],c(4,3))) 

ES1 <- t(array(Elast_Skew[2,],c(4,3))) 

ES2 <- t(array(Elast_Skew[3,],c(4,3))) 

 

AUC_yrange <- c(min(EA1, EA2), max(EA1, EA2)) 

Skew_yrange <- c(min(ES1, ES2), max(ES1, ES2)) 

Par_labels <- expression(italic(y[0]), 

                         italic(E), 

                         italic(E[L]), 

                         italic(E[H])) 

legendlabels <- expression(paste("development rate ", theta, sep = 

""), 

                           paste("mortality rate ", mu, sep = ""), 

                           paste("encounter rate ", rho, sep = "")) 

plotcolors <- topo.colors(3) 

 

barplot(EA1, ylim = AUC_yrange , names.arg = Par_labels, beside = T, 

col = plotcolors, ylab = "Relative change in AUC") 

barplot(EA2, beside = T, add=T, col = plotcolors, density = 15) 

legend("topright", legend = legendlabels, fill = plotcolors, cex = 

0.75) 

 

barplot(ES1, ylim = Skew_yrange, names.arg = Par_labels, beside = T, 

col = plotcolors, ylab = "Relative change in Skewness") 

barplot(ES2, beside = T, add=T, col = plotcolors, density = 15) 

legend("topright", legend = legendlabels, fill = plotcolors, cex = 

0.75) 
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Appendix S4. Case study in SS model fitting using Schistosoma mansoni cercaria activity data 
 
Here, we provide a detailed case study showing how to fit the SS model to thermal performance 
data (here, cercaria swimming speed), following the maximum likelihood approach of Régnière 
et al. (2012) and implementing it in R (R Development Core Team, 2014).  
 
S4.1 – Study species 

The trematode parasite Schistosoma mansoni is the most widespread parasitic agent of human 
schistosomiasis (Colley et al., 2014). The parasite has a two-host life cycle, where free-swimming 
cercariae seek out humans after being released from the intermediate host snail Biomphalaria 
glabrata (Colley et al., 2014) (Fig. 1C, D). We conducted an experiment to quantify the 
temperature dependence of S. mansoni cercaria swimming speed as a proxy for parasite 
metabolism. The methods for data collection are provided in Section S4.2, and the data fitting 
procedures are detailed in the subsequent sections. 
 
S4.2 – Experimental design and data collection 

S. mansoni-infected B. glabrata snails were obtained from the Schistosomiasis Resource Center 
(BEI Resources, NIAID, NIH). Snails were maintained at room temperature (22 C) in artificial spring 
water (Cohen et al., 1980) with a 12:12 hour photoperiod, Snails were fed ad libitum a 
combination of frozen spinach and “snail jello”, which is an agar preparation that includes calcium 
powder and ground Tetramin™ fish flakes (Paull et al., 2015). Prior to cercaria collection, five 
infected snails were moved to a temperature-controlled Styrofoam incubator (Raffel et al., 2013) 
and were maintained there at 22 C for one week. Two days prior to the experiment (day 6 of 
acclimation), a wooden panel was placed over the clear lid of the incubator to maintain complete 
darkness (0:24 photoperiod) for the remaining 2 days. Snails were then placed under a bright LED 
light for 1 hour to encourage cercaria release. S. mansoni cercariae were collected and 
fluorescently stained with a fluorescently-labeled fatty acid analogue (BODIPY FL C12; Invitrogen, 
Carlsbad, CA, USA) following the protocol of LaFonte et al. (2015). The experiment was conducted 
in two temporal blocks. All cercariae were observed within 3 hours of release from the snail 
(n=49). The order in which cercariae were exposed to temperature treatments was randomized 
within temporal blocks to account for potential changes in cercariae viability throughout the day. 

Individual cercaria were then pipetted into the depression on the underside of a specimen 
cup with approximately 5 µL of 22 C artificial spring water (Fig. S3). The lid was then floated for 
five minutes in 250 mL of water, maintained at one of eight temperatures (13, 16, 19, 22, 25, 28, 
31, 34 C) to ensure that the water in the depression containing the cercaria had reached and 
stayed at the target temperature. We verified that this timing was sufficient using an infrared 
thermometer prior to the experiment. Each cercaria was viewed under a fluorescent 
stereomicroscope (Leica MZ10F, Leica Microsystems, Wetzler, Germany) fitted with a color 
digital video camera (Leica DFC450C, Leica Microsystems, Wetzler, Germany). Video recordings 
of cercaria activity were obtained using the MicroManager software (Edelstein et al., 2014) 
interacting with VirtualDub screen capture software (www.virtualdub.org). Cercaria swimming 
speed was quantified by tracking the position of each cercaria’s tail base throughout each video 
and calculating the velocity between successive points in millimeters per second (mm·sec-1). 
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S4.3 – Loading and plotting data 

The following code loads the experimental data (performance temperature, cercaria swimming 
speeds, temporal block) into the R console and creates a dataframe named “myData”. 
 
#Experimental performance temperatures (°C) 

PerfTemp <- c(22, 22, 19, 19, 22, 19, 25, 13, 13, 25, 25, 16, 31, 16, 16, 31, 

31, 34, 34, 28, 28, 28, 34, 34, 34, 28, 34, 28, 34, 34, 28, 31, 16, 31, 

16, 16, 31, 19, 19, 22, 22, 19, 25, 13, 13, 25, 13, 13, 25) 

 

#Cercaria swimming speeds (mm/sec) 

Velocity <- c(0.833, 0.209, 0.201, 0.115, 0.183, 0.143, 0.611, 0.165, 

 0.199, 0.597, 0.416, 0.097, 0.208, 0.292, 0.159, 0.370, 0.228, 0.152, 

 0.178, 0.502, 0.516, 0.480, 0.270, 0.191, 0.255, 0.508, 0.248, 0.585, 

 0.215, 0.115, 0.601, 0.165, 0.181, 0.268, 0.289, 0.122, 0.241, 0.173, 

 0.194, 0.180, 0.369, 0.406, 0.281, 0.198, 0.302, 0.449, 0.208, 0.052, 

 0.417) 

 

#Temporal blocks in the experiment 

#Random effects must be entered as numeric vectors for this model formulation 

BlockReal <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 

2, 2, 2, 2) 

 

myData <- as.data.frame(cbind(PerfTemp,Velocity)) 

myData$PerfTemp <- as.double(PerfTemp)       #numeric variable 

myData$Velocity <- as.double(Velocity)       #numeric variable 

 
These data can now be plotted using  
 
plot(PerfTemp,Velocity) 

 

Note that the data clearly extend beyond Tpk, capturing the high-temperature inactivation (Fig. 
7B). We therefore proceed with fitting the SS model to these thermal performance data, and not 
the simpler BA-model, which is unable of capturing these nonlinearities. 
 

S4.4 – Fitting the Sharpe-Schoolfield (SS) model to thermal performance data using maximum 
likelihood 

Our dataset did not include temperatures close enough to the critical thermal minimum of S. 
mansoni, so we could not estimate the low-temperature inactivation energy (EL) or the 
corresponding threshold (TL). We therefore simplified the SS model by omitting these terms (i.e. 
setting TL=0 K) and describe the temperature-dependence of cercaria performance p(T) within 
the experimental temperature range using 
 

(S3)  𝑝(𝑇) =  𝑝0𝑒
−

𝐸

𝑘
(

1

𝑇
−

1

𝑇0
)

∙ [1 + 𝑒
𝐸𝐻

𝑘
(

1

𝑇𝐻−
1

𝑇
)
]

−1

. 
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The following code implements the maximum likelihood approach of Régnière et al. (2012) in R, 
estimating the activation energy (E), high-temperature inactivation energy (EH) and temperature 
threshold (TH) of cercaria swimming speed. 
 
#Define constants 

k  <- 8.62*10^(-5) #Boltzmann's constant 

K  <- 273.15  #Celsius to Kelvin conversion 

To <- 19 + K  #Standardization temperature 

 

#Log-likelihood function to be optimized, assuming a log-normal error 

#distribution (after Régnière et al., 2012) 

 

SSmodel <- function(data, par){ 

   s_epsilon <- par[1] 

   pTo <- par[2] 

   E  <- par[3] 

   Th  <- par[4] 

   Eh  <- par[5] 

 

   se2 <- (-0.5)*s_epsilon^2  #mean of the normally distributed variable  

     #‘epsilon’ below (Régnière et al., 2012) 

   x <- data[,1]+K 

   y <- data[,2] 

 

   expected <- pTo*exp(-(E/k*(1/x-1/To)))*(1+exp(Eh/k*(1/Th-1/x)))^-1 

   epsilon <- log(y/expected)  #note that errors are calculated as 

      #ratios, not differences  

 

   p <- dnorm(epsilon,se2,s_epsilon) 

 

   for (i in 1:length(p)){ 

      if(p[i] < 1e-10) p[i] <- 1e-10     #prevents log(0) computation errors 

   } 

 

   LL<- sum(log(p)) 

   -LL 

} 

 
#’Reasonable’ initial parameter estimates to ensure convergence of the 

#optimization procedure 

init <- c(s_epsilon= 0.1, pTo= 0.2, E= 0.65, Th= 303, Eh= 3.5) 

  

 

#Set parameter lower and upper parameter boundaries 

lower <- c(0, 0, 0, 0, 0)    

upper <- c(Inf, Inf, Inf, Inf, Inf)        

 

#Optimize full model for all parameters 

model <- optim(par= init, fn= SSmodel, data= myData,  

   method= "L-BFGS-B", lower= lower, upper= upper, hessian=TRUE)  

model          #view model output 

 

#Output optimized model coefficients and their 95% confidence intervals 

Coef <- model$par 

SE <- sqrt(diag(solve(model$hessian)))    #SE for parameter estimates 

Value <- SE*1.96                #95% confidence intervals for estimates 
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cbind(Coef, Value)             

 

#Table of model parameter estimates and the value to calculate 95% confidence 

#intervals (Coef +/- Value) 

#                 Coef      Value 

#s_epsilon   0.4197777 0.08310917 

#pTo         0.2703667 0.04715787 

#E           0.6984673 0.29862724 

#Th        303.4948870 2.91925910 

#Eh          3.2046242 1.32339403 

 

#Plot the optimized model function over data (Fig. 7B, solid black line). 

plot(PerfTemp, Velocity)             #plot data 

cercSwim <- function(x, pTo, E, Eh, Th){ 

   y = pTo*exp(-(E/k*(1/x-1/To)))*(1+exp(Eh/k*(1/Th-1/x)))^-1  

} 

LineTemps <- seq(13, 34, length= 100) + K 

PredictionsDnorm <- cercSwim(x= LineTemps, pTo= 0.270 , E= 0.698 , Eh= 3.205 

, Th= 303.5) 

lines(LineTemps-K, PredictionsDnorm)   #plot optimized SS model 

 
The optimized parameter values of the SS-model and their confidence intervals are provided in 
the table above, and the model fit to data is shown in Fig. 7B. Our parameter estimates 
conformed closely to a priori expectations based on the interspecific means of activation energies 
(E = 0.65 eV; Gillooly et al., 2001; Brown et al., 2004) and inactivation energies (EH = 5 × 0.65 eV 
= 3.25 eV; Molnár et al., 2013), although we note that this need not be the case in general (Section 
2). However, our estimate of the high-temperature inactivation threshold TH = 303.49 ± 2.92 K (= 
30.34 ± 2.92 C) for cercaria swimming speed was nearly 15 C lower than the literature estimate 
of CTmax = 45 C for S. mansoni (Lawson & Wilson, 1980). This is probably because our measure of 
parasite performance differed from that assessed by Lawson and Wilson (1980), who measured 
the temperature needed to induce 100% cercaria mortality. Schistosome cercariae use 
temperature as one way of detecting definitive hosts, and they might interpret environmental 
temperatures similar to that of their definitive host’s body temperature (37 C) as an indication 
that a definitive host is nearby (Colley et al., 2014). For this reason,  temperatures greater than 
37 C might induce a behavioral response in which cercariae stop swimming and shed their tails 
in preparation to penetrate a definitive host (Colley et al., 2014). Indeed, during this experiment 
we frequently observed S. mansoni cercariae that stopped swimming and began crawling along 
the cup surface in the high temperature treatments (31 and 34 C), supporting this interpretation. 

 
S4.5 – Adding a random effect to the SS model with log-normal error structure 

In this final section, we modify the R code from Section S4.4 to allow for the addition of potential 
random effects in the sampling design. Such random effects may, for example, arise when 
experiments are conducted on individuals originating from separate source populations, when 
individuals have differing thermal histories, or when experiments are conducted in multiple 
temporal blocks or incubators. Régnière et al. (2012) showed how to incorporate a random effect 
into the likelihood function of the SS model, and provide example SAS code. The primary change 
to the previous code is the addition of a new parameter, s_upsilon, which represents the 
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standard deviation of the population means. For example, in an experiment with multiple blocks, 
this parameter would describe the standard deviation of the block means.  

Our experiment with S. mansoni cercariae was conducted in 2 temporal blocks (cf. 
variable BlockReal in S4.3). However, model optimization showed that the random effect of 
block was negligible (s_upsilon < 0.0001) in our data1. A block effect so small is difficult to 
evaluate statistically and can make the model unstable, because the likelihood function 
approaches infinity as s_upsilon approaches zero. We therefore created an artificial blocking 
variable BlockFake) for demonstration purposes, where each data point was assigned to 
BlockFake = 1 if swimming speed was lower than the mean swimming speed at that performance 
temperature, and to BlockFake = 2 if it was higher (Figure S4). 
 
#Artificial (fake) blocking variable for demonstration purposes 

 

BlockFake <- c(2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 

1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 

1, 1) 

 

myData2 <- as.data.frame(cbind(PerfTemp,Velocity,BlockFake)) 

myData2$PerfTemp <- as.double(PerfTemp)  #numeric 

myData2$Velocity <- as.double(Velocity)  #numeric 

 

#Modified maximum likelihood approach, including a random effect:  

 

#define constants 

k <- 8.62*10^(-5)     #Boltzmann’s constant (eV/K) 

K <- 273.15           #Celsius to Kelvin conversion 

To <- 19 + K          #Standardization temperature (arbitrary) 

 

SSmodelrandom <- function(data, par){ 

  s_epsilon <- par[1] 

  s_upsilon <- par[2]  

  pTo <- par[3]   

  E  <- par[4]  

  Th <- par[5] 

  Eh <- par[6] 

                                                           
1 Optimizing this model with the real temporal block variable (BlockReal) required precise selection 
of initial parameter estimates and a more forgiving optimization method to achieve model 
convergence, due to the negligibly small magnitude of the random effect (s_upsilon ≈ 2.0 × 10-9). 
The traditional “optim” function only has one available method for bounded parameter 
optimization (“L-BFGS-B”). To estimate s_upsilon for the BlockReal effect, we used the updated 
“optimx” function (package optimx) which allows bounded parameter estimation using the robust 
“spg” method (Nash & Varadhan, 2011; Nash, 2014). Such a small s_upsilon is problematic because 
the likelihood function approaches infinity as s_upsilon approaches zero (Régnière et al., 2012), 
leading to inflated likelihood values and thus potentially inaccurate estimates for other parameters. 
It is often easier to achieve model convergence with a simpler model (in this case, the earlier model 
with no random effect), and this can be a good way to refine starting values for more complex 
models that might have more trouble converging. In this case, plotting the data also helped to 
reveal the negligible difference between blocks, leading us to try out the smaller starting values for 
s_upsilon that ultimately led to model convergence. 
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  se2 <- (-0.5)*s_epsilon^2     

    

  x <- data[,1]+K; y <- data[,2]; Block <- data[,3] 

 

  expected <- pTo*exp(-(E/k*(1/x-1/To)))*(1+exp(Eh/k*(1/Th-1/x)))^-1 

  data <- cbind(data, expected) 

  upsilon <- numeric(length(x)) 

 

  for (j in 1:max(Block)){ 

    #upsilon_j is the mean deviation from expected for treatment j 

    upsilon_j <- mean(subset(data, Block==j)[,2]/subset(data,  

                 Block==j)[,4])  

    #insert each datapoint's upsilon value into the dataframe 

      for (i in 1:length(x)){ 

        if (Block[i]==j) upsilon[i] <- upsilon_j     

      } 

  } 

  epsilon <- log(y/(expected*upsilon))      #See Régnière et al. 2012 

 

  if(s_upsilon < 1e-20) s_upsilon <- 1e-20  #helps prevent NaN's 

  if(s_epsilon < 1e-5) s_epsilon <- 1e-5     

 

  p1 <- dnorm(upsilon, mean= 1, sd= s_upsilon) 

  p2 <- dnorm(epsilon, mean= se2, sd= s_epsilon)  

  

  for (i in 1:length(p1)){                  #helps prevent NaN's 

    if(p1[i] < 1e-5) p1[i] <- 1e-5 

    if(p2[i] < 1e-5) p2[i] <- 1e-5                         

  } 

 

  LL <- sum(log(p1*p2)) 

  return(-LL) 

} 

 

#Initial parameter estimates and boundaries for parameter search space 

init <- c(s_epsilon= 0.4, s_upsilon= 0.5, pTo= 0.2704665, 

             E= 0.697644, Th= 303, Eh= 3.2059197) 

 

lower <- c(0, 0, 0, 0, 0, 0) 

upper <- c(Inf, Inf, Inf, Inf, Inf, Inf) 

 

#Optimize full model for all parameters 

model <- optim(par= init, fn= SSmodelrandom, data= myData2,  

         method= "L-BFGS-B", lower= lower, upper= upper, hessian=TRUE) 

model 

 

#Output optimized model coefficients and their standard errors 

coef <- model$par 

SE <- sqrt(diag(solve(model$hessian)))   #SE for parameter estimates 

Value <- SE*1.96         #95% confidence intervals 

cbind(coef,Value) 
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#Table of model parameter estimates and the value to calculate 95% confidence 

#intervals (Coef +/- Value) 

#                 coef       Value 

# s_epsilon   0.2923503 0.05986718 

# s_upsilon   0.2872339 0.05993339 

# pTo         0.3010968 0.03805723 

# E           0.6950091 0.22658316 

# Th        303.2161098 2.26526098 

# Eh          3.0731122 0.91245373 

 

 

#Plot model 

#subset the blocks 

blockL <- subset(myData2,BlockFake=="1") 

blockH <- subset(myData2,BlockFake=="2") 

plot(blockH$PerfTemp,blockH$Velocity, 

  pch=1,col='red',ylim=c(0,1), , bty="l", 

  xlab="Temperature (C)", ylab="Cercaria swimming speed (mm/sec)") 

points(blockL$PerfTemp,blockL$Velocity,pch=16,col='blue') 

 

LineTemps<-seq(13,35,length=100)+K 

Predictions<-cercSwim(x=LineTemps, pTo= 0.301 , E= 0.695 , Eh= 3.073 , Th= 

303.216)  #full model predictions 

PredictionsHigh<-Predictions+(Predictions*.287)  #high block predictions 

PredictionsLow<-Predictions-(Predictions*.287)  #low block predictions 

lines(LineTemps-K, PredictionsHigh, lwd=2, lty=3,col='red') 

lines(LineTemps-K, PredictionsLow,lwd=2, lty=2,col='blue') 

 

Including this artificial (fake) random effect, maximum likelihood estimated s_epsilon = 0.292 ± 
0.060 mm·sec-1 and s_upsilon = 0.287 ± 0.060 mm·sec-1, showing that the block effect 
accounted for about half of the random error in this dataset as expected. The remaining 
parameter estimates were similar to those obtained without a random effect (p0 = 0.301 ± 0.038 
mm·sec-1; E = 0.695 ± 0.227 eV; TH = 303.22 ± 2.27 K [= 30.07 ± 2.27 C]; EH = 3.073 ± 0. 912 eV).  
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Figure S3. Photograph of the specimen cup lids used in the cercaria swimming speed experiment. Arrow 
indicates the depression used to contain individual cercaria during video capture. Metric ruler included 
for scale. 
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Figure S4. Visualization of the artificially created (fake) block effect on the S. mansoni cercariae swimming 
speed experimental data. Blue, closed circles represent swimming speeds below the mean swimming 
speed at that temperature (Block 1), and red, open circles represent swimming speed above the mean 
speed at that temperature (Block 2). The best-fitting SS-model that accounts for this block effect (Block 1: 
blue dashed curve; Block 2: red dotted curve) was estimated using the code in S4.5.  
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