Quantitative Bias Analysis of the Association between Occupational Radiation Exposure and Ischaemic Heart Disease Mortality in UK Nuclear Workers

Frank de Vocht ${ }^{1}$, Richard M Martin ${ }^{1}$, Mira Hidajat ${ }^{1}$, Richard Wakeford ${ }^{2}$
${ }^{1}$ Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PS, United Kingdom
${ }^{2}$ Centre for Occupational and Environmental Health, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, United Kingdom

ONLINE SUPPLEMENT

Funding: This work was supported by the National Institute for Health Research (Policy Research Programme, Occupational Exposure to Ionising Radiation and Mortality from Ischaemic Heart Disease, PR-R14-0915-23004). The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health and Social Care.

Conflicts of Interest: RW is a member of the Technical Working Party of the UK Compensation Scheme for Radiation-Linked Diseases. Otherwise, the authors declare they have no actual or potential competing financial interests.

Acknowledgments: This study was approved by the University of Bristol Faculty of Health Sciences Research Ethics Committee (Application 40782) and by the NDA-PHE Research Governance Group, which includes representatives of employees, Sellafield Ltd, the Nuclear Decommission Authority (NDA) and Public Health England (PHE).

The authors would like to thank Less Scott (Public Health England, Centre for Radiation, Chemical and Environmental Hazards (CRCE)) for his help with exposure assessment and linkage of datasets, Will Atkinson (Nuvia) for his help with the SES-occupation coding scheme, Professor McNamee (University of Manchester) for her help with data identification, management and linkage, and Professor Agius (University of Manchester) for his medical and epidemiological contributions to study on which the current work is based.

Table S1. Nested matched case-control study population characteristics

Variable		Controls	Cases
N		715	715
Site	Springfield	330	330
	Sellafield	385	385
Socio-economic status (longest-held occupation)	1-2 (highest)	13	10
	3	304	282
	4	360	384
	5 (lowest)	14	17
	missing	24	22
Start of employment at either site	< 1950	20	30
	1950-1959	507	494
	1960-1969	153	155
	1970 +	35	36
Age at start of employment	Mean (SD)	35.7 (8.4)	35.8 (8.4)
Age of death (or censoring) (years)	<40	136	132
	40-49	139	141
	50-59	212	216
	60-69	228	226
Main occupation (longest-held occupation)	Other	363	345
	Process worker	328	349
	unknown	24	21
Pre-employment smoking status	Non/ex-smoker	151	129
	Current smoker	305	407
	Unknown	259	179
Pre-employment Body Mass Index (BMI)	<18.5	479	454
	18.5-24.9	16	20
	25.0-29.9	180	201
	$30+$	26	24
	missing	14	16
Pre-employment diastolic blood pressure (mmHg)		13	19
	$70-85$	352	298
	86-99	233	256
	100+	78	111
	missing	39	31
Pre-employment systolic blood pressure (mmHg)	<120	52	41
	120-138	317	285
	138-159	231	247
	160+	76	111
	missing	39	31
Shiftwork (ever)	Never	242	228
	Ever	414	442
	Missing	59	45
Cumulative NIL $_{85}$ exposure (dB(A)-years)	<85.0	279	213
	85.0-94.8	168	168
	94.9-99.7	126	164
	99.8+	138	167
	missing	4	3

Monitored for internal	No	323	315
exposure	Yes	392	400
Cumulative external radiation	(median (mSv), (IQR))	$26.62(6.05-95.15)$	$34.15(8.87-144.84)$
dose	(median (mSv), (IQR))	$37.20(9.97-117.06)$	$44.43(10.60-155.83)$
15 year lagged Cumulative external radiation dose			

Table S2. Comparison associations between cumulative radiation dose from external sources (15-year lagged dose) and ischaemic heart disease mortality using matched logistic regression and Generalized Additive Model (GAM) estimation methods.

Variables		Matched logistic regression [20]				GAM Approximate $\mathbf{9 5 \%}$ CI
		$\begin{gathered} \mathrm{N} \\ \text { (controls/cases) } \end{gathered}$	Odds Ratio	95% Confidence Interval	Odds Ratio	
15-yr lagged	0-10.6	188/180	1		1	
Cumulative external	10.6-44.4	199/178	0.99	0.71-1.38	0.96	0.71-1.30
radiation	44.4-155.8	183/178	1.10	0.78-1.55	1.08	0.77-1.50
$\begin{gathered} \text { dose } \\ (\mathrm{mSv})^{1} \end{gathered}$	$\begin{array}{r} 155.8- \\ 1,290.7 \end{array}$	145/179	1.54	1.01-2.35	1.49	1.00-2.22
	Springfields	330/330	Not included		1	
Site	Sellafield	385/385			0.87	0.66-1.16
Monitored for internal dose	no yes	$323 / 315$ $392 / 400$	1 0.94	0.75-1.19	1 0.97	0.77-1.23
Age of death (or censoring) (years)	<40	136/132	1		1	
	40-49	139/141	3.13	0.33-29.59	1.01	0.71-1.43
	50-59	212/216	3.13	0.27-36.08	0.97	0.68-1.36
	60-69	228/226	1.81	0.11-29.39	0.92	0.64-1.32
Start of employment at either site	<1950	20/30	1		1	
	1950-1960	507/494	0.26	0.10-0.70	0.64	0.35-1.17
	1960-1970	153/155	0.27	0.05-1.34	0.69	0.36-1.33
	1970+	35/36	0.26	0.01-6.40	0.68	0.31-1.50
Age at start of employment	year		1.19	1.01-1.40	1.00	0.99-1.02
Main occupation	Other	363/345	1		1	
	Process worker	328/349	0.99	0.59-1.67	0.94	0.56-1.59
	unknown	24/21	0.00		0.00	
Socioeconomic Status	$\begin{gathered} 1-2 \\ \text { (highest) } \end{gathered}$	13/10	1		1	
	3	304/282	1.18	0.51-2.77	1.23	0.52-2.91
	4	360/384	1.37	0.53-3.57	1.47	0.55-3.94
	5 (lowest)	14/17	1.41	0.46-4.26	1.59	0.51-4.89
	missing	24/22	>100		>100	

15-year lagged cumulative exposure	Per 100 mSv	1.05	$0.97-1.14$	1.03	$0.34-3.13$

Table S3. Comparison parameters fully adjusted and unadjusted Generalized Additive Model (GAM)

full model splines parameters			unadjusted splines parameters		
estimate					
0.929	0.782				
1.103	0.419	1.104	0.953	0.824	1.103
0.972	0.845	1.117	1.079	0.484	2.403
0.869	0.45	1.679	0.979	0.872	1.098
0.972	0.875	1.080	0.897	0.519	1.550
1.157	0.62	2.162	0.979	0.897	1.068
0.927	0.683	1.258	1.12	0.666	1.884
2.072	0.173	24.832	0.943	0.731	1.217
1.028	0.682	1.550	1.76	0.219	14.12

Table S4. Comparison of distribution of non- and ex-smokers, current smokers and workers with missing information on tobacco smoking in cases and controls in the full study population and the subsample of the current study.

Complete case-control population (1,220 matched pairs)				
	Non/ex-smokers (\%)	Current smokers (\%)	Missing (\%)	
Controls	$285(23.4)$	$567(46.5)$	$368(30.2)$	
Cases	$207(19.7)$	$667(63.3)$	$179(17.0)$	
Subset Radiation workers with complete career information (715 matched pairs)				
Non/ex-smokers (\%)				
Controls	$151(21.1)$	Current smokers (\%)	Missing (\%)	
Cases	$129(18.0)$	$305(42.7)$	$259(36.2)$	

Figure S1. Dose-response association of GAM model for different sets of confounder adjustments. (*) base model adjusted for site, monitored for internal exposure, decade of exit, age at start of employment, main job and socio-economic status.

Figure S2. Distribution of maximum Odds Ratio (left) and 95\% lower limit (right) for association between cumulative external radiation dose and ischaemic heart disease for $1,000 \mathrm{MCMC}$ bootstrap samples.

Figure S3. Histogram of Odds Ratios in highest quartile of cumulative external radiation dose from 1,000 bootstrap samples (left panel) and corresponding distribution of $\mathbf{9 5 \%}$ lower limits (right panel).

Figure S4. Illustration of measurement error for scenario (a) for 5 randomly selected MCMC samples (colours indicate different samples)

Figure S5. Distribution of maximum Odds Ratio (left) and $\mathbf{9 5 \%}$ lower limit for $\mathbf{1 , 0 0 0}$ MCMC samples for scenario (a)

Figure S6. Illustration of measurement error for scenario (b) for 5 randomly selected MCMC samples (colours indicate different samples)

Figure S7. Distribution of maximum Odds Ratio (left) and $\mathbf{9 5 \%}$ lower limit for $\mathbf{1 , 0 0 0}$ MCMC samples for scenario (b)

Figure S8. Illustration of measurement error for scenario (c) for 5 randomly selected MCMC samples (colours indicate different samples)

Figure S9. Distribution of maximum Odds Ratio (left) and $\mathbf{9 5 \%}$ lower limit for $\mathbf{1 , 0 0 0}$ MCMC samples for scenario (c)

Figure S10. Illustration of measurement error for scenario (d) for 5 randomly selected MCMC samples (colours indicate different samples)

Figure S11. Distribution of maximum Odds Ratio (left) and $\mathbf{9 5 \%}$ lower limit for $\mathbf{1 , 0 0 0}$ MCMC samples for scenario (d)

Figure S12. Illustration of patterns of cumulative external radiation dose and random 'unmeasured confounder', correlated with Pearson correlation ($\mathbf{r}(\mathbf{p})$) of $\mathbf{0 . 1 0}$, for 5 randomly selected MCMC samples (colours indicate different samples)

Figure S13. Illustration of patterns of cumulative external radiation dose and random 'unmeasured confounder', correlated with Pearson correlation $(\mathbf{r}(\mathbf{p})$) of $\mathbf{0 . 3 0}$, for 5 randomly selected MCMC samples (colours indicate different samples)

Figure S14. Illustration of patterns of cumulative external radiation dose and random 'unmeasured confounder', correlated with Pearson correlation ($\mathbf{r}(\mathbf{p})$) of $\mathbf{- 0 . 3 0}$, for 5 randomly selected MCMC samples (colours indicate different samples)

Figure S15. Illustration of patterns of cumulative external radiation dose and random 'unmeasured confounder', correlated with Pearson correlation ($\mathbf{r}(\mathbf{p})$) of $\mathbf{- 0 . 9 0}$, for 5 randomly selected MCMC samples (colours indicate different samples)

Figure S16. Comparative results of associations between cumulative external radiation dose and ischaemic heart disease mortality with models including an 'unmeasured confounder', modelled as a spline instead of a linear functional form, correlated with Pearson correlation coefficients $\mathbf{r}(\mathbf{p})$ ranging 0.10-0.90. Maximum odds ratios and range in $\mathbf{1 , 0 0 0}$ MCMC samples are $\mathbf{1 . 4 3}(\mathbf{1 . 3 8 - 1 . 4 9})$ for $\mathbf{r}(\mathbf{p})=\mathbf{0 . 1 0}$, $1.44(\mathbf{1 . 3 1 - 1 . 5 9})$ for $r(p)=0.30,1.48(1.21-6.41)$ for $r(p)=0.60$, and $3.23(1.00-100.1)$ for $r(p)=\mathbf{0 . 9 0}$.

Corresponding percentage of samples with $\mathbf{9 5 \%}$ lower limit >1 are $\mathbf{1 0 0 \%}, \mathbf{1 0 0 \%}, \mathbf{9 2 . 4 \%}$ and $\mathbf{4 7 . 9 \%}$, respectively.

Figure S17. Comparative results of associations between cumulative external radiation dose and ischaemic heart disease mortality with models including an 'unmeasured confounder', modelled as a spline instead of a linear functional form, correlated with Pearson correlation coefficients $\mathbf{r}(\mathbf{p})$ ranging $-\mathbf{0 . 1 0}$ to $\mathbf{- 0 . 9 0}$. Maximum odds ratios and range in $\mathbf{1 , 0 0 0}$ MCMC samples are $1.43(1.37-1.51)$ for $\mathbf{r}(\mathbf{p})=$ $-0.10,1.44(1.28-1.58)$ for $r(p)=-0.30,1.47(1.21-3.40)$ for $r(p)=-0.60$, and $3.28(1.02-61.4)$ for $r(p)=-0.90$. Corresponding percentage of samples with $\mathbf{9 5 \%}$ lower limit >1 are $\mathbf{1 0 0 \%}, \mathbf{1 0 0 \%}, \mathbf{9 3 . 2 \%}$ and $\mathbf{4 1 . 8 \%}$, respectively.

