The Tricolored Blackbird (Agelaius tricolor) is a range-restricted, colonial-nesting species in decline. Colonies include tens of thousands of individuals that forage in the surrounding landscape, at times commuting miles between nesting and foraging grounds. We explored the role of landscape composition on colony occupancy and mapped core and potential spring foraging habitat in California, USA. We used observations of spring Tricolored Blackbird nesting colonies from 2008, 2011, and 2014 and characterized changes in the surrounding landscape during an extended drought. Then, we constructed occurrence and abundance models in order to map core foraging habitat across 4 ecoregions in California. Finally, we used simulated land cover changes to identify potential habitat under restoration scenarios. Across the 3 survey years, surface water declined over time at unoccupied colony locations but remained stable at occupied colony locations, confirming that permanent surface water was a critical feature of persistent Tricolored Blackbird colonies. Average percent cover of nearly all land cover types suitable for foraging, as well as frequency of dairies and median NDVI, were all higher in current or historical colony sites than elsewhere. The proportion of surrounding alfalfa, grasslands, and surface water were the elements of foraging habitat best able to predict Tricolored Blackbird early breeding season colony presence and colony size. Core foraging habitat covered over 6 million acres in the study region, but only 18% was occupied in 2014. This result suggests a need to study additional factors determining colony occurrence and persistence, such as landscape connectivity, distributions of nesting substrates, and risk from predators. The vast majority (93.1%) of Tricolored Blackbird core habitat occurred on private land; therefore, saving the species will require engagement and partnership with private landowners.