Signals from both leaves and apical or axillary meristems of leafy spurge are known to inhibit root bud growth. To test the hypothesis that carbohydrates and growth regulators affect root bud growth, decapitated leafy spurge plants were hydroponically treated with glucose, sucrose, gibberellic acid (GA), abscisic acid (ABA), 1-naphthaleneacetic acid (NAA), 6-benzylaminopurine (BA), and a GA biosynthesis inhibitor, paclobutrazol. Both glucose and sucrose caused suppression of root bud growth at concentrations of 30 mM. The inhibitory effect of sucrose was counteracted by GA at 15 μM. In contrast, BA, ABA, NAA, and paclobutrazol inhibited root bud growth at concentrations as low as 1, 2, 1, and 16 μM, respectively. Sugar and starch levels were also determined in root buds at various times after decapitation. Buds of intact plants contained the highest level of sucrose compared with buds harvested 1, 3, and 5 d after decapitation. To determine how seasonal changes affect root bud dormancy, growth from root buds of field-grown plants was monitored for several years. Root buds of field-grown leafy spurge had the highest level of innate dormancy from October to November, which persisted until a prolonged period of freezing occurred in November or early December. Our data support the hypothesis that carbohydrates may be involved in regulating dormancy status in root buds of leafy spurge.
Nomenclature: Leafy spurge, Euphorbia esula L. EPHES.