Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Tribenuron-methyl has been used widely for the last 15 yr to control white mustard in cereal crops from southern Spain. Since 2007, several cases of tribenuron-methyl resistance have been reported in wheat fields. Greenhouse and laboratory studies were conducted to characterize the mechanism of suspected tribenuron-methyl resistance in a white mustard biotype (hereafter AR16) from Malaga (southern Spain). Under greenhouse conditions, the dose (g ai ha−1) inhibiting fresh weight by 50% (ED50) was 5.20 and 0.57 for the AR16 and AR3 (known susceptible) biotypes, respectively. With the use of 14C-tribenuron-methyl, absorption and translocation from treated leaves were similar between biotypes. Thin-layer chromatography indicated foliar metabolism of tribenuron-methyl was low in both R and S biotypes. Assays on the binding affinity of tribenuron-methyl on acetolactate synthase (ALS) revealed enzyme activity was reduced by 50% (I50 value) at 638.7 and 0.23 nM for the AR16 and AR3 biotypes, respectively. This resulted in 2,777-fold greater resistance to tribenuron-methyl for the AR16 compared to AR3 biotype. Sequencing the gene encoding ALS, a proline/serine amino-acid substitution, was detected in position 197 of the A domain. Based on these results, it is concluded that tribenuron-methyl resistance in the AR16 biotype is due to a target-site mutation in the ALS enzyme, resulting in a lack of affinity to tribenuron-methyl.
Synthetic auxin herbicides are commonly used in forage, pasture, range, and turfgrass settings for dicotyledonous weed control. Aminocyclopyrachlor (AMCP) is a newly developed pyrimidine carboxylic acid with a chemical structure and mode of action similar to the pyridine carboxylic acids—aminopyralid, clopyralid, and picloram. Injury to sensitive dicotyledonous plants has been observed following exposure to monocotyledonous plant material previously treated with pyridine compounds. The absorption, translocation, and metabolism of AMCP has been documented in susceptible broadleaf weeds; however, no information is available, to our knowledge, regarding AMCP fate in tolerant Poaceae, which may serve as the vector for off-target plant injury. Based on this premise, research was conducted to characterize absorption, translocation, and metabolism of AMCP in tall fescue. 14C-AMCP was applied to single tiller tall fescue plant foliage under controlled laboratory conditions at North Carolina State University (Raleigh, NC). Radiation was quantified in leaf wash, treated leaf, foliage, crown, roots, and root exudates at 3, 12, 24, 48, 96, and 192 h after treatment (HAT). 14C-AMCP was rapidly absorbed by tall fescue, reaching 38 and 68% at 3 and 48 HAT, respectively. Translocation of 14C-AMCP was limited to the foliage, which reached maximum translocation (34%) at 96 HAT. Most of the recovered 14C-AMCP remained in the leaf wash, treated leaf, or foliage, whereas minimal radiation was detected in the crown, roots, or root exudates throughout the 192-h period. No AMCP metabolism was observed in tall fescue through the 192 HAT. These data suggest AMCP applied to tall fescue can remain bioavailable, and mishandling treated plant material could result in off-target injury.
Common lambsquarters tolerance to glyphosate is problematic because of the species' widespread distribution, competitive ability with many crop species, the widespread use of glyphosate in agriculture, and the weed's potential to develop decreased sensitivity to multiple herbicide sites of action. The mechanism that confers common lambsquarters tolerance to glyphosate is not known. Therefore, we conducted experiments to determine the mechanism of tolerance to glyphosate in an accession of common lambsquarters from Indiana relative to a sensitive accession from Wisconsin. The ED50 (the effective dose that reduced shoot mass 50% relative to nontreated plants) value for the tolerant accession (1.6 kg ae ha−1 ± 0.4 standard error of the mean [SEM]) was eightfold greater than the ED50 for the sensitive accession (0.2 kg ae ha−1 ± 0.2 SEM) 28 d after treatment. The glyphosate target-site (EPSPS) DNA sequence at proline 106, shikimate accumulation as an estimate of EPSPS sensitivity, and EPSPS protein abundance did not differ between accessions. Absorption of 14C-glyphosate was slightly greater in the tolerant accession than it was in the sensitive accession at 48 and 72 h after treatment (HAT). However, the tolerant accession translocated a smaller percentage of absorbed 14C-glyphosate to the tissue above the treated leaf, which included the shoot apical meristem, at 24, 48, and 72 HAT (P ≤ 0.05, 0.01, and 0.10, respectively). These results suggest an important role of reduced translocation in conferring tolerance of common lambsquarters to glyphosate.
Nomenclature: EPSPS, 5-enolpyruvylshikimate-3-phosphate synthase; glyphosate; common lambsquarters, Chenopodium album L. CHEAL.
Out of 1,343 mutant lines of rice mutated by sodium azide from the parental Japonica-type variety ‘Tainung 67’ (TNG67), a paraquat-susceptible line 1192 and a paraquat-tolerant line 72 were selected using whole seedlings at the four-leaf stage and leaf segments at the tillering stage as test materials. Further selection from progenies of these two mutant lines yielded the susceptible 1192-11 (S) and tolerant 72-16 (T), which were studied herein. Chlorophyll fluorescence, electrolyte leakage, and lipid peroxidation were measured for leaf segments of rice following treatment with 0.1 mM paraquat. A comparison of these responses among the three rice lines (TNG67, 72-16, and 1192-11), revealed a higher tolerance to paraquat in the tolerant mutant line 72-16 and the parental variety TNG67 than in the susceptible mutant 1192-11. Analysis of the antioxidative system in paraquat-treated leaf segments showed that the reduced form of glutathione (GSH) and the ratio of GSH to total glutathione increased by 3.5-fold within 6 h after treatment (HAT) and up to 5-fold 9 HAT in the T line, as compared with the S line. In view of the high activities of both dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in paraquat-treated leaves of TNG67 and the T line, the antioxidative effect of the ascorbate–glutathione cycle is hereby proposed to play an essential role in paraquat tolerance of rice. Pretreatment of rice segments with spermine enhanced DHAR and GR activities as well as paraquat tolerance of the S line. These results suggest that the activity of ascorbate–glutathione cycle induced by spermine is involved in rice tolerance to this herbicide. Although kinetics studies showed no significant difference among the three rice lines in paraquat inhibition of GR, a lower affinity of enzyme to substrate (Km) in TNG67 and the T line and a higher maximal reaction rate (Vmax) in the T line for the oxidized glutathione substrate (GSSG) were detected. These observations further implicate the importance of glutathione reductase in paraquat tolerance of rice.
A tall waterhemp population from Missisippi was suspected to be resistant to glyphosate. Glyphosate dose response experiments resulted in GR50 (dose required to reduce plant growth by 50%) values of 1.28 and 0.28 kg ae ha−1 glyphosate for the glyphosate-resistant (GR) and -susceptible (GS) populations, respectively, indicating a five-fold resistance. The absorption pattern of 14C-glyphosate between the GR and GS populations was similar up to 24 h after treatment (HAT). Thereafter, the susceptible population absorbed more glyphosate (55 and 49% of applied) compared to the resistant population (41 and 40% of applied) by 48 and 72 HAT, respectively. Treatment of a single leaf in individual plants with glyphosate at 0.84 kg ha−1, in the form of 10 1-µl droplets, provided greater control (85 vs. 29%) and shoot fresh weight reduction (73 vs. 34% of nontreated control) of the GS plants compared to the GR plants, possibly indicating a reduced movement of glyphosate in the GR plants. The amount of 14C-glyphosate that translocated out of the treated leaves of GR plants (20% of absorbed at 24 HAT and 23% of absorbed at 48 HAT) was significantly lower than the GS plants (31% of absorbed at 24 HAT and 32% of absorbed at 48 HAT). A potential difference in shikimate accumulation between GR and GS populations at different concentrations of glyphosate was also studied in vitro. The IC50 (glyphosate concentration required to cause shikimate accumulation at 50% of peak levels measured) values for the GR and GS populations were 480 and 140 µM of glyphosate, respectively, resulting in more shikimate accumulation in the GS than the GR population. Sequence analysis of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), the target site of glyphosate, from GR and GS plants identified a consistent single nucleotide polymorphism (T/C, thymine/cytosine) between GR/GS plants, resulting in a proline to serine amino acid substitution at position 106 in the GR population. The GR and GS plants contained equal genomic copy number of EPSPS, which was positively correlated with EPSPS gene expression. Thus, glyphosate resistance in the tall waterhemp population from Mississippi is due to both altered target site and nontarget site mechanisms. This is the first report of an altered EPSPS-based resistance in a dicot weed species that has evolved resistance to glyphosate.
Annual bluegrass is the most problematic winter annual weed in managed turfgrass. Acetolactate synthase (ALS)-inhibiting herbicides are effective for annual bluegrass control, but reliance on this mode of action can select for herbicide-resistant biotypes. Two annual bluegrass biotypes not controlled with ALS-inhibiting herbicides were reported at golf courses in South Carolina and Georgia. Research was initiated at Clemson University to verify the level of resistance of these biotypes to ALS inhibitors. Two ALS-susceptible (S) and suspected resistant (SCr, GAr) annual bluegrass biotypes were established in a greenhouse. Dose-response experiments were conducted on mature annual bluegrass plants using trifloxysulfuron, foramsulfuron, and bispyribac-sodium, all ALS-inhibiting herbicides. Additionally, a rapid diagnostic ALS activity assay was optimized and conducted using the same herbicides. For dose-response experiments, the rate of herbicide that reduced shoot biomass 50% (I50) values for the S biotypes were 13.6 g ai ha−1 for trifloxysulfuron, 7.0 g ai ha−1 for foramsulfuron, and 38.3 g ai ha−1 for bispyribac-sodium. Fifty percent shoot biomass reduction was not observed in either the SCr or GAr biotypes at eight times the labeled field rate of all ALS-inhibiting herbicides tested. For in vivo tests of ALS activity, the SCr biotype yielded I50 (concentration of herbicide that reduced ALS activity 50%) values 3,650, 3,290, and 13 times the S biotypes following treatment with trifloxysulfuron, foramsulfuron, and bispyribac-sodium, respectively. Similarly, I50 values for the GAr biotype were 316, 140, and 64 times greater than the S biotypes following the same herbicide treatments. This research indicates high levels of annual bluegrass resistance to multiple ALS-inhibiting herbicides in South Carolina and Georgia. Future research should focus on the mechanisms of ALS resistance in these annual bluegrass biotypes as well as alternative options for control not targeting the ALS enzyme.
Nomenclature: Bispyribac-sodium; foramsulfuron; trifloxysulfuron; annual bluegrass, Poa annua L.
Populations of water starwort, a winter annual or biennial weed in the pink family (Caryophyllaceae), can no longer be controlled by tribenuron following successive use of this herbicide over several years. Whole-plant bioassays have established that the resistant water starwort populations JS17, JS08, JS16, and JS07 showed high-level (from 203-fold to 565-fold) resistance to tribenuron. In vitro acetolactate synthase (ALS) assays revealed that resistance was due to reduced sensitivity of the ALS enzyme to tribenuron. The half-maximal inhibitory concentration (I50) values for JS17, JS08, JS16, and JS07 were 72, 71, 70, and 76 times greater, respectively, than were those of the susceptible population JS24. This altered ALS sensitivity in the resistant populations was due to a mutation in the ALS gene resulting in a Pro197 to Ser substitution (JS17, JS08, and JS16) and a Pro197 to Leu substitution (JS07). This study established the first documented case, to our knowledge, of evolved tribenuron resistance in water starwort and concluded that the molecular basis of resistance is due, at least in part, to a target-site modification at Pro197 in the ALS gene.
Nomenclature: Tribenuron; water starwort, Myosoton aquaticum (L.) Moench.
Reduced control of some glyphosate-resistant hairy fleabane populations with paraquat has raised concerns about evolved multiple resistance to both glyphosate and paraquat. The objective of this study was to confirm the presence of multiple-resistant (glyphosate and paraquat) hairy fleabane populations in California. A series of dose-response experiments was conducted to evaluate the effect of glyphosate and paraquat in a known susceptible (S) and putative multiple-resistant (R) population of hairy fleabane. The greenhouse experiments were conducted during summer, fall, and winter under controlled temperature and natural light conditions. Multiple-resistant hairy fleabane was identified; however, the level of resistance to glyphosate varied substantially among seasons. During the summer, the glyphosate rate required to reduce growth by 50% (GR50) for the R population was 0.94 kg ae ha−1, 5.2-fold more than for the S population. In the fall and winter experiments, however, the R population response to glyphosate was similar to the S population with a GR50 of 0.22 kg ae ha−1 or less. Multiple-resistant plants were controlled in the fall and winter at rates that did not control the same population during summer. GR50 of paraquat varied among seasons (0.94, 0.24, and 0.07 kg ai ha−1 during summer, fall, and winter, respectively); however, plant mortality was more consistent. This is the first reported case of glyphosate–paraquat resistance in hairy fleabane and the multiple-resistant population could pose a significant challenge to annual no-till and perennial cropping systems in California. Further research on the mechanisms of resistance and the physiological factors underlying the seasonally variable response to glyphosate is needed.
Crop residues acting as mulches can influence weed seedling emergence and weed biomass. A field study was conducted to evaluate the effect of rice residue amounts (0, 3, and 6 t ha−1) on seedling emergence of eight weed species in zero-till dry-seeded rice. The highest seedling emergence of spiny amaranth, southern crabgrass, crowfootgrass, junglerice, eclipta, goosegrass, and Chinese sprangletop was observed in the absence of residue. Seedling emergence of these weeds declined with increasing residue amounts; however, the greatest and most substantial reductions in emergence occurred with 6 t ha−1 of residue. The presence of residue also resulted in less weed biomass than with the no-residue treatment. The emergence and biomass of threelobe morningglory seedlings, however, were not influenced by residue amounts. The use of residue also increased the time taken to reach 50% of maximum emergence for some species, for example, spiny amaranth and Chinese sprangletop. The results of our study suggest that the use of residue at high rates can help suppress seedling emergence and growth of many weeds. However, there is a need to integrate other weed management strategies with residue retention to achieve season-long weed control.
KEYWORDS: duration of interference, duration of weed-free period, critical timing of weed removal, Critical weed-free period, Weed competition, yield loss
Field studies were conducted in 2010 and 2011 at Belle Glade, FL, to evaluate the influence of phosphorus (P) applications (98, 196, and 293 kg P ha−1) on the critical period of weed control (CPWC) in lettuce. Natural populations of mixed weed species were allowed to interfere with lettuce in a series of treatments of both increasing duration of weed interference and the duration of weed-free period imposed within 98, 196, and 293 kg P ha−1 levels added to the soil. The beginning and end of the CPWC for each P fertilization level based on a 5% acceptable marketable fresh lettuce yield loss level was determined by fitting log-logistic and Gompertz models to represent the increasing duration of weed interference and the duration of weed-free period, respectively. The CPWC in lettuce was estimated to be 4.6, 3.4, and 2.3 wk at 98, 196, and 293 kg P ha−1, respectively. The beginning of the CPWC was delayed at the highest P fertilization level (293 kg P ha−1), whereas the end of the CPWC was hastened at the same P fertilization level. Our study shows that inadequate levels of P fertilization in lettuce result in the need for more-intensive weed management practices to attain acceptable yields.
Robust predictions of weed seedling emergence from the soil seedbank are needed to aid weed management. A common seed accession (Illinois) of giant ragweed was buried in replicate experimental gardens over 18 site years in Illinois, Michigan, Kansas, Nebraska, Ohio, and South Dakota to examine the importance of site and climate variability by year on seedling emergence. In a nonlinear mixed-effects modeling approach, we used a flexible sigmoidal function (Weibull) to model giant ragweed cumulative seedling emergence in relation to hydrothermal time accumulated in each site-year. An iterative search method across a range of base temperature (Tb) and base and ceiling soil matric potentials (ψ;b and ψ;c) for accumulation of hydrothermal time identified optima (Tb = 4.4 C, ψ;b = −2,500 kPa, ψ;c = 0 kPa) that resulted in a parsimonious regional model. Deviations between the fits for individual site-years and the fixed effects regional model were characterized by a negative relationship between random effects for the shape parameter lrc (natural log of the rate constant, indicating the speed at which emergence progressed) and thermal time (base 10 C) during the seed burial period October through March (r = −0.51, P = 0.03). One possible implication of this result is that cold winter temperatures are required to break dormancy in giant ragweed seeds. By taking advantage of advances in statistical computing approaches, development of robust regional models now is possible for explaining arable weed seedling emergence progress across wide regions.
Spreading dogbane is a common perennial weed in wild blueberry fields. It is highly competitive and spreads rapidly once established. Herbicides can provide effective control of spreading dogbane, but application timing is important. The emergence pattern, ramet height, and flowering time of spreading dogbane were observed in 2008 and 2009, and thermal-based emergence, growth, and development models were developed and used to estimate optimum herbicide application timing. Spreading dogbane emergence and height were described with a three-parameter, sigmoid, nonlinear regression model, whereas flowering was described with a four-parameter, Weibull, nonlinear regression model. Spreading dogbane ramets initiated emergence soon after the biofix date of April 1. Peak emergence tended to occur at 420 growing degree days (GDD). Spreading dogbane reached its peak height by about 558 GDD. The maximum number of flowers per plant was reached at approximately 750 GDD. This study suggested that POST herbicides should be applied between 486 and 535 GDD to maximize efficacy. This time frame occurs after peak emergence and during early floral bud development.
Infection by Xanthomonas axonopodis pv. manihotis (Xam) of the perennial rangeland weed leafy spurge was tested to see whether Xam might serve a potential biological control agent for this invasive weed. Although leafy spurge was susceptible to Xam infection, it recovered within 21 d after inoculation (DAI). Microarray resources available for leafy spurge allowed us to follow the physiological and signaling pathways that were altered as leafy spurge was infected and then recovered from Xam infection. The first physiological effect of Xam infection was a down-regulation of photosynthetic processes within 1 DAI. By 7 DAI, numerous processes associated with well-documented pathogenesis responses of plants were observed. Although some pathogenesis responses were still detectable at 21 DAI, other processes associated with meristem development were noted. Ontological analysis of potential signaling systems indicated jasmonic acid plays a significant role in the recovery processes.
Nomenclature: Leafy spurge, Euphorbia esula L. EPHES.
Sweet corn is seeded under a wide range of population densities; however, the extent to which variable population density influences weed suppression is unknown. Therefore, field studies were undertaken to quantify the influence of sweet corn seeding level on growth, seed production, and post-harvest seed germination of wild-proso millet, one of the most problematic weeds in the crop. As crop seeding level increased, path analysis results indicated the crop canopy became taller and thicker, resulting in less wild-proso millet biomass, seed production, and germinability. However, at the level of individual fields, reductions in wild-proso millet growth and seed production were modest, at best, between a crop population currently used by growers and a higher crop population known to optimize yield of certain hybrids. These results indicate near-future increases in sweet corn seeding levels may play a minor role in improving weed management in individual sweet corn fields. Nonetheless, a reduction in crop populations, via weather- or management-driven phenomenon, increases risk of greater wild-proso millet seed production.
Weed emergence models require biological parameters such as base temperature for germination, determination of which is costly and time-consuming. Transferability of these parameters across different populations may therefore represent one of the main constraints for the development and practical use of emergence models at a large scale. A collaborative project was undertaken to assess the interpopulation variability of base temperature for germination in different European populations of velvetleaf and jimsonweed and evaluate possible applicative consequences in terms of weed control. Seeds were collected in Italy, Portugal, and Spain, and each population was then sown in every country, obtaining nine seed batches named as experimental lots. Base temperature for germination was estimated for each experimental lot to calculate lot-specific accumulation of growing degree days (GDD) under three dissimilar climatic scenarios. Threshold date (TD50) was calculated as the date when GDD accumulation of a given experimental lot surpassed the values corresponding to 50% of cumulative field emergence of seedlings. GDD accumulation and TD50 were then used as indicators to identify differences among experimental lots within each climatic scenario. No significant differences were detected among base temperatures estimated for velvetleaf experimental lots or among their patterns of accumulation of GDD and TD50 values within climatic scenarios. Each value of base temperature determined for a single experimental lot could therefore be adopted to model germination for all the lots regardless of the population of origin or cultivation site. In contrast, the population of origin affected the base temperature for jimsonweed, with significantly higher values for experimental lots of the Portuguese population. From an applicative perspective, differences among patterns of accumulation of GDD and TD50 of several experimental lots within each climatic scenario suggest the need to use population-specific values as base temperature for germination and emergence modeling of jimsonweed.
Weeds are often the major biological constraint to growing legume crops successfully, and an understanding of the critical period of weed control (CPWC) is important for developing environmentally sustainable weed management practices to prevent unacceptable yield loss. Therefore, we carried out two field experiments to identify the CPWC for two grain legume crops traditionally grown in Mediterranean areas: chickpea and faba bean. The experiments were conducted at two sites both located in the Sicilian inland (Italy). In chickpea, when weeds were left to compete with the crop for the whole cycle, the grain yield reduction was on average about 85% of the weed-free yield, whereas in faba bean the reduction was less severe (on average about 60% of the weed-free yield). The onset of the CPWC at a 5% yield loss level varied by species, occurring later in faba bean than in chickpea (on average, 261 and 428 growing degree days after emergence for chickpea and faba bean, respectively). In both species, the end of the CPWC occurred at the early full-flowering stage when the canopy of each crop enclosed the interrow space. On the whole, the CPWC at a 5% yield loss level ranged from 50 to 69 d in chickpea and from 28 to 33 d in faba bean. The results highlight the fact that faba bean has a higher competitive ability against weeds than chickpea. This could be attributable both to more vigorous early growth and to the plant's greater height, both factors related to a greater shading ability and, consequently, to a better ability to suppress weeds.
Nomenclature: Faba bean, Vicia faba L. var. minor; chickpea, Cicer arietinum L.
In 2006 and 2007, farmers from two counties in Illinois reported failure to control waterhemp with glyphosate. Subsequent onsite field experiments revealed that the populations might be resistant to multiple herbicides. Greenhouse experiments therefore were conducted to confirm glyphosate resistance, and to test for multiple resistance to other herbicides, including atrazine, acifluorfen, lactofen, and imazamox. In glyphosate dose-response experiments, both populations responded similarly to a previously characterized glyphosate-resistant population (MO1). Both Illinois populations also demonstrated high frequencies of resistance to the acetolactate synthase (ALS) inhibitor, imazamox. Additionally, one of the populations demonstrated high frequencies of resistance to both atrazine and the protoporphyrinogen oxidase (PPO) inhibitor, lactofen. Furthermore, using combinations of sequential and tank-mix herbicide applications, individual plants resistant to herbicides spanning all four site-of-action groups were identified from one population. Molecular experiments were performed to provide an initial characterization of the resistance mechanisms and to provide confirmation of the presence of multiple resistance traits within the two populations. Both populations contained the W574L ALS mutation and the ΔG210 PPO mutation, previously shown to confer resistance to ALS and PPO inhibitors, respectively. Atrazine resistance in both populations is suspected to be metabolism-based, because a triazine target-site mutation was not identified. A P106S EPSPS mutation, previously reported to confer glyphosate resistance, was identified in one population. This mutation was identified in both resistant and sensitive plants from the population; however, and so more research is needed to determine the glyphosate-resistance mechanism(s). This is the first known case of a weed population in the United States possessing multiple resistance to herbicides from four site-of-action groups.
Nomenclature: Acifluorfen; atrazine; glyphosate; imazamox; imazethapyr; lactofen; common waterhemp, Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea and Tardif AMATU.
Citral is a monoterpene commonly found as volatile component in many different aromatic plants. Although many studies have identified the presence of citral in phytotoxic essential oils, this work determines for the first time the potential herbicidal effect of citral on weeds. The use of citral against weeds and crops resulted in the potential for the management of barnyardgrass, redroot pigweed, and ribwort. Clear morphological differences were observed between adult thale cress plants exposed to citral in two different application methods: spraying and watering. Citral-sprayed and citral-watered thale cress plants showed completely different effects after treatment, suggesting that foliar or root absorption can determine the effectiveness of this compound. This work demonstrates that citral is effective not only on seedling metabolism but also on adult plants by inhibiting growth and development altering the plant oxidative status.
Nomenclature: Citral, 3,7-dimethyl-2,6-octadienal, CAS 5392-40-5; barnyardgrass, Echinochloa crus-galli L. (Beauv.) ECHICRU; redroot pigweed, Amaranthus retroflexus L. AMARE; buckhorn plantain, Plantago lanceolata L. PLANLAN; thale cress, Arabidopsis thaliana L. ARATH.
Bermudagrass is a difficult perennial weed to manage in Louisiana sugarcane. Research was conducted to compare interrow tillage practice, postharvest residue management, and herbicide placement on bermudagrass proliferation and sugarcane yield. Tillage frequencies included conventional (four tillage operations per season), reduced (two tillage operations), and no-till. Residue management practices included removal by burning, sweeping from row top into the wheel furrow, and not removed. Spring herbicide placement treatments included broadcast, banded, or no herbicide application. With conventional tillage, broadcast and banded herbicide applications resulted in similar bermudagrass cover in the first and second ratoon crops, but bermudagrass cover was greater when using banded applications (22%) compared with broadcast application (15%) in the third-ratoon crop. Bermudagrass cover was greatest with no-till. When herbicides were banded, bermudagrass cover was greater in reduced tillage than conventional tillage in all three ratoon crops. Postharvest residue management did not affect bermudagrass ground cover. In plant cane, sugarcane yields were lowest when herbicide was not applied. In ratoon crops, sugarcane and sugar yield were reduced when herbicide was not applied regardless of tillage practice. Cane and sugar yield were generally equal when comparing reduced and conventional tillage. Total sugarcane yield (4 crop yr) for the no-till program was reduced 11, 15, and 25%, respectively, when herbicides were broadcast, banded, and when herbicide was not applied, compared with conventional tillage. Failure to remove residue reduced sugarcane yield by 5, 7, and 10% in first, second, and third ratoons, respectively, compared with burning. Eliminating unnecessary tillage practices can increase profitability of sugarcane through reduced costs, but it will be imperative that herbicide programs be included to provide adequate bermudagrass control and that postharvest residue is removed to promote maximum sugarpostane yield.
Infestations of Italian ryegrass are problematic in both conventional and organic wheat production systems. The development of wheat cultivars with superior competitive ability against Italian ryegrass could play a role in maintaining acceptable yields and suppressing weed populations. Research was conducted in North Carolina to identify indirect methods of selection for Italian ryegrass suppressive ability (hereafter referred to as weed suppressive ability) of winter wheat cultivars that correlate well with Italian ryegrass-to-wheat biomass ratios. Two winter wheat cultivars (Dyna-Gro Baldwin and Dyna-Gro Dominion) and one experimental wheat line (NC05-19684) with differing morphological traits were overseeded with varying densities of Italian ryegrass. Wheat height measured throughout the growing season in weed-free plots was strongly associated with weed suppressive ability, but high wheat tillering capacity had no significant effect on weed suppressive ability in the lines tested in this study. Italian ryegrass seed head density during grain fill was strongly correlated (r = 0.94) with Italian ryegrass-to-wheat biomass ratio, the generally accepted measure of weed suppressive ability. Visual estimates of percent Italian ryegrass biomass relative to the plot with the highest level of Italian ryegrass infestation in each replicate were also strongly correlated with weed suppressive ability at all growth stages, especially during heading (r = 0.87) (Zadoks growth stage [GS] 55). Measurements from nonimaging spectrophotometers and overhead photographs taken from tillering (Zadoks 23 to 25) to early dough development (Zadoks 80) were unreliable estimates of end-of-season Italian ryegrass-to-wheat biomass ratios because they failed to account for wheat cultivar differences in biomass, color, and growth habit. Italian ryegrass seed head density and visual estimates of Italian ryegrass biomass during grain fill are appropriate indirect methods of selection for weed suppressive ability in breeding programs.
Nomenclature: Italian ryegrass, Lolium perenne L. ssp. multiflorum (Lam.) Husnot LOLMU; wheat, Triticum aestivum L.
Glyphosate applied POST can provide a high level of efficacy on many weed species in soybean, but delayed application beyond optimal weed growth stages might fail to fully protect yield potential. Further, we do not have a good understanding of the extent to which delayed glyphosate application and its associated yield loss is occurring on-farm. Our goal was to characterize on-farm weed communities in glyphosate-resistant soybean just prior to glyphosate application and estimate potential yield loss associated with early-season soybean-weed competition. In field surveys conducted across 64 site-yr in southern Wisconsin in 2008 and 2009, common lambsquarters, velvetleaf, dandelion, Polygonum spp., and Amaranthus spp. were the five most abundant broadleaf weed species across site-years, present in 92, 69, 64, 42, and 50% of all fields, respectively, at average densities of 14, 5, 5, 14, and 10 plants m−2, respectively. Average height of these species was 21 cm or less at or near the time of glyphosate application. Grass and sedge species occurred in 95% of fields at an average density of 41 plants m−2 and height of 21 cm. The mean and median values of total weed density across site-years were 101 and 41 plants m−2, with heights of 19 and 17 cm, respectively. Recommended height for treatment is 15 cm. Glyphosate application occurred on average at V3 to V4 soybean growth stage, which is later than V2 soybean typically targeted to protect yield. Average yield loss predicted by WeedSOFT® was 5% with a mean economic loss of $47 ha−1. Predicted yield loss was greater than 5% on one-fourth of the site-years, all of which were treated at V4 soybean or later. The maximum predicted yield loss was 27%. These results suggest that glyphosate was applied at weed height and soybean growth stages that were greater than optimal to protect yield in many fields across southern Wisconsin. A soil-residual herbicide applied PRE, or a more timely POST application of glyphosate would alleviate the majority of these losses.
Nomenclature: Glyphosate; Amaranthus spp.; common lambsquarters, Chenopodium album L. CHEAL; dandelion, Taraxacum officinale G. H. Weber ex Wiggers TAROF; velvetleaf, Abutilon theophrasti Medik. ABUTH; Polygonum spp.; soybean, Glycine max (L.) Merr.
Pesticide sorption by soil is among the most sensitive input parameters in many pesticide-leaching models. For many pesticides, organic matter is the most important soil constituent influencing pesticide sorption. Increased fertility, irrigation, and mowing associated with highly maintained turfgrass areas result in constant deposition of organic material, creating a soil system that can change drastically with time. Changes in soil characteristics could affect the environmental fate of pesticides applied to turfgrass systems of varying ages. Sorption characteristics of simazine and S-metolachlor were determined on five soils from bermudagrass systems of increasing ages (1, 4, 10, 21, and 99 yr) and compared to adjacent native pine and bare-ground areas. Surface soil (0 to 5 cm) and subsurface soil (5 to 15 cm) from all sites were air-dried and passed through a 4-mm sieve for separation from plant material. Using a batch-equilibrium method, sorption isotherms were determined for each soil. Data were fit to the Freundlich equation, and Kd (soil sorption coefficient) and Koc (organic carbon sorption coefficient) values were determined. Sorption and soil system age were directly related to organic matter content in the soil. Sorption of both herbicides increased with age of the soil system and was greatest on the surface soil from the oldest bermudagrass soil system. Herbicide sorption decreased at greater soil depths with lower organic matter. Greater amount of 14C–simazine sorbed to subsurface soil of the oldest turfgrass system compared to 14C–S-metolachlor. Results indicate that as bermudagrass systems age and accumulate higher organic matter levels increased herbicide sorption may decrease the leaching potential and bioavailability of simazine and S-metolachlor.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere