Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Plants of Sumatran fleabane [Conyza sumatrensis (Retz.) E. Walker] were identified in a field with an unusual rapid leaf-injury herbicide symptoms after application of 2,4-D in mixture with glyphosate. The objectives of this study were to confirm the occurrence of resistance to 2,4-D herbicide and to characterize the occurrence of rapid necrosis as the mechanism associated with the herbicide resistance in C. sumatrensis. The studies performed were an initial screening, effect of 2,4-D alone and associated with glyphosate, cross- and multiple-resistance evaluation, effect of commercial formulation and analytical product, and rate of H2O2 evolution. The Marpr9-rn accession was identified with rapid necrosis symptoms and survival to 804 g ae ha–1 of 2,4-D. The resistance factor to the herbicide 2,4-D was 18.6 at 49 d after spraying. The analytical product 2,4-D and the commercial formulation resulted in similar symptoms of rapid necrosis. This symptom did not occur for the six other auxinic herbicides (dicamba, florpyrauxifen-benzyl, fluroxypyr, halauxifen-methyl, picloram, and triclopyr), indicating absence of cross-resistance. Multiple resistance to the herbicides paraquat, saflufenacil, and ammonium glufosinate was not identified in the Marpr9-rn population. However, survival following treatment with the herbicides glyphosate and chlorimuron-ethyl occurred. The evolution of H2O2 began at 15 min after application and was less pronounced in low light. These results indicate the first case of resistance to 2,4-D and occurrence of rapid necrosis in C. sumatrensis.
A redroot pigweed (Amaranthus retroflexus L.) population (HN-02) collected from Nenjiang County, Heilongjiang Province, exhibited multiple resistance to fomesafen and nicosulfuron. The purposes of this study were to characterize the herbicide resistance status of an HN-02 population for both acetolactate synthase (ALS) and protoporphyrinogen oxidase (PPO) inhibitors and the response to other herbicides and to investigate the target site-based mechanism governing fomesafen and nicosulfuron resistance. Three mutations, Ala-205-Val and Trp-574-Leu mutations in the ALS gene and an Arg-128-Gly mutation in the PPX2 gene, were identified in individual resistant plants. An HN-02F1-1 subpopulation homozygous for the Ala-205-Val and Arg-128-Gly mutations was generated, and whole-plant experiments confirmed multiple resistance to PPO inhibitors (fomesafen, fluoroglycofen-ethyl, and acifluorfen) and ALS inhibitors (imidazolinones [IMI], sulfonylureas [SU], and triazolopyrimidines [TP]) in the HN-02F1-1 plants, which presented resistance index values ranging from 8.3 to 110; however, these plants were sensitive to flumioxazin, fluroxypyr-meptyl, and 2,4-D butylate. In vitro ALS enzyme activity assays revealed that, compared with ALS from susceptible plants, ALS from the HN-02F1-1 plants was 15-, 28- and 320-fold resistant to flumetsulam, nicosulfuron, and imazethapyr, respectively. This study confirms the first case of multiple resistance to PPO and ALS inhibitors in A. retroflexus and determines that the target-site resistance mechanism was produced by Ala-205-Val and Arg-128-Gly mutations in the ALS gene and PPX2 gene, respectively. In particular, the Ala-205-Val mutation was found to endow resistance to three classes of ALS inhibitors: TP, SU, and IMI.
Rapid growth of Palmer amaranth (Amaranthus palmeri S. Watson) poses a challenge for timely management of this weed. Dose–response studies were conducted in 2017 and 2018 under field and greenhouse conditions near Garden City and Manhattan, KS, respectively, to evaluate the efficacy of dicamba to control ≤10-, 15-cm, and 30-cm-tall A. palmeri, which mimics three herbicide application timings: on-time application (Day 0) and 1- (Day 1) and 4-d (Day 4) delays. Visual injury rating and reduction in shoot biomass (% of nontreated), and mortality were assessed at 4 wk after treatment using a three- and four-parameter log-logistic model in R. Increasing dicamba doses increased A. palmeri control regardless of plant height in both the field and greenhouse studies. The results suggest that delaying application 1 (15 cm) and 4 d (30 cm) resulted in 2- and 27-fold increases in the effective dose of dicamba on A. palmeri, respectively, under field conditions. However, in the greenhouse, for the same level of A. palmeri control, more than 1- and 2-fold increases in dicamba dose, respectively, were required. Similarly, the effective dose of dicamba required for 50% reduction in A. palmeri shoot biomass (GR50) increased more than 4- and 8-fold or more than 1- and 2-fold when dicamba application was delayed by 1 (15 cm) and 4 d (30 cm), in the field or in the greenhouse, respectively. To understand the basis of increased efficacy of dicamba in controlling early growth stages of A. palmeri, dicamba absorption and translocation studies were conducted. Results indicate a significant reduction in dicamba absorption (7%) and translocation (15%) with increase in A. palmeri height. Therefore, increased absorption and translocation of dicamba results in increased efficacy in improving A. palmeri control at early growth stages.
Glyphosate is a popular herbicide used to control goosegrass [Eleusine indica (L.) Gaertn.], one of the most troublesome weeds in cotton (Gossypium hirsutum L.) fields. However, high selection pressure has led to some populations being difficult to control in cotton fields in China. In this study, levels of glyphosate resistance were quantified and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) amplification was confirmed. In addition, distribution of the EPSPS gene among the chromosomes was also investigated using fluorescence in situ hybridization (FISH) methodology. One population (AHCZ) was confirmed to be glyphosate resistant with a resistance index of 3.4 and significantly reduced shikimate accumulation compared with the susceptible population. All examined AHCZ individuals exhibited no mutations in the EPSPS gene. Expression and copy numbers of EPSPS in the AHCZ population were 5.7 and 15.4 times higher, respectively, than in the susceptible population. A positive correlation was identified between signal intensities of primary anti-EPSPS antibody and copy numbers of the EPSPS protein, as indicated by immunoblot analysis. FISH results revealed that, in mitotic metaphase chromosomes, signals were observed dispersed across two sets of homologous chromosomes in a resistant individual (copy number = 31), while in susceptible individuals, signals were only partially detected in one set of homologous chromosomes. In interphase nuclei, EPSPS signals were brightest in resistant individuals compared with susceptible individuals. In conclusion, one E. indica population from a cotton field in the Anhui Province has evolved resistance to glyphosate, and EPSPS gene amplification was confirmed as the resistance mechanism.
Southern crabgrass [Digitaria ciliaris (Retz.) Koeler] is an annual grass weed that commonly infests turfgrass, roadsides, wastelands, and cropping systems throughout the southeastern United States. Two biotypes of D. ciliaris (R1 and R2) with known resistance to cyclohexanediones (DIMs) and aryloxyphenoxypropionates (FOPs) previously collected from sod production fields in Georgia were compared with a separate susceptible biotype (S) collected from Alabama for the responses to pinoxaden and to explore the possible mechanisms of resistance. Increasing rates of pinoxaden (0.1 to 23.5 kg ha–1) were evaluated for control of R1, R2, and S. The resistant biotypes, R1 and R2, were resistant to pinoxaden relative to S. The S biotype was completely controlled at rates of 11.8 and 23.5 kg ha–1, resulting in no aboveground biomass at 14 d after treatment. Pinoxaden rates at which tiller length and aboveground biomass would be reduced 50% (I50) and 90% (I90) for R1, R2, and S ranged from 7.2 to 13.2 kg ha–1, 6.9 to 8.6 kg ha–1, and 0.7 to 2.1 kg ha–1, respectively, for tiller length, and 7.7 to 10.2 kg ha–1, 7.2 to 7.9 kg ha–1, and 1.6 to 2.3 kg ha–1, respectively, for aboveground biomass. Prior selection pressure from DIM and FOP herbicides could result in the evolution of D. ciliaris cross-resistance to pinoxaden herbicides. Amplification of the carboxyl-transferase domain of the plastidic ACCase by standard PCR identified a point mutation resulting in an Ile-1781-Leu amino acid substitution only for the resistant biotype, R1. Further cloning of PCR product surrounding the 1781 region yielded two distinct ACCase gene sequences, Ile-1781 and Leu-1781. The amino acid substitution, Ile-1781-Leu in both resistant biotypes (R1 and R2), however, was revealed by next-generation sequencing of RNA using Illumina platform. A point mutation in the Ile-1781 codon leading to herbicide insensitivity in the ACCase enzyme has been previously reported in other grass species. Our research confirms that the Ile-1781-Leu substitution is present in pinoxaden-resistant D. ciliaris.
The repetitive use of ALS inhibitors for smallflower umbrella sedge (Cyperus difformis L.) control has selected for herbicide-resistant (R) populations that threaten the sustainability of rice (Oryza sativa L.) production and demand alternative control measures be developed. A better understanding of seedling recruitment patterns at the field level is required to optimize the timing and efficacy of control measures. Therefore, a population-based threshold model was developed for optimizing germination prediction in multiple acetolactate synthase (ALS)-R and ALS-susceptible (ALS-S) C. difformis biotypes and applied to field-level emergence predictions. Estimated base temperatures (Tb) ranged from 16.5 to 17.6 C with no clear pattern between biotypes; such values are higher than Tb values of other important rice weeds, as well as for rice. Germination rates increased linearly from 16 to 33.7 C. ALS-R seeds germinate faster due to smaller median thermal times to germination (θT(50)) while also displaying lower germination synchronicity across water potentials. Interestingly, ALS-R biotypes were capable of germinating under lower moisture availability, as indicated by their lower (more negative) base water potential values (Ψb(50)) for seed germination; Ψb(50) values ranged from –0.24 to –1.13 MPa. In-field soil germination measurements found thermal times to emergence varied across three water regimes (daily water, flooded, or saturated). Seedling emergence under the daily water treatment was fastest; however, total seedling density was lower than for the other water regimes. In order to optimize springtime C. difformis seedling emergence, soil moisture should be kept around field capacity, as germination is hindered at lower moisture contents. By predicting when most of the seed population germinates, the thermal-time model can address issues regarding the optimal timing for herbicide applications, thereby allowing for improved C. difformis management in rice fields.
Common lambsquarters (Chenopodium album L.) is one of the most troublesome weeds in soybean [Glycine max (L.) Merr.] and corn (Zea mays L.) fields in northeast China. In 2017, a C. album population that survived imazethapyr at the recommended field rate was collected from a soybean field in Heilongjiang Province in China. Experiments were conducted to determine the basis of resistance to imazethapyr and investigate the herbicide-resistance pattern in C. album. Dose–response tests showed that the resistant population (R) displayed high resistance to imazethapyr (20-fold) compared with the susceptible population (S). An in vitro acetolactate synthase (ALS) activity assay indicated that the ALS of the R population was resistant to imazethapyr compared with the ALS of the S population. Sequence analysis of the ALS gene revealed that the GCA was replaced by ACA at amino acid position 122, which resulted in an alanine to threonine substitution (Ala-122-Thr) in the R population. The R population displayed cross-resistance to thifensulfuron-methyl and flumetsulam but susceptibility to bispyribac-sodium, flucarbazone, glyphosate, mesotrione, and fomesafen. These results confirmed that the basis of imazethapyr resistance in C. album was conferred by the Ala-122-Thr substitution in the ALS enzyme. This is the first report of the target-site basis of ALS-inhibiting herbicide resistance in C. album.
Plants that release molecules affecting other plants are a source of potential bioherbicides. Silver wattle (Acacia dealbata Link), considered invasive worldwide, was found to be phytotoxic to various other plant species. Combining the search for alternative bioherbicides while reducing the spread of this invader by preventing seed formation is a good potential strategy to solve both agricultural and environmental problems. This study aimed to identify nonvolatile compounds from A. dealbata flowers and explore their phytotoxicity on the germination process and seedling and plant growth of lettuce (Lactuca sativa L.), wheat (Triticum aestivum L.), and rigid ryegrass (Lolium rigidum Gaudin). We identified methyl cinnamate and methyl anisate as potential phytotoxins in the extracts, but we used pure commercial molecules to conduct bioassays. Methyl cinnamate showed higher phytotoxicity than methyl anisate and was selected for further bioassays. Methyl cinnamate reduced guaiacol peroxidase activity by 57% and 85% in L. rigidum and lettuce, respectively, and α-amylase by 6% in L. rigidum. This compound also inhibited early stem and radicle growth of dicotyledonous lettuce (60% and 89%, respectively) and monocotyledonous L. rigidum (76% and 87%, respectively), both species having small seeds. However, wheat with a larger seed size was not affected by the phytotoxin. The results obtained indicate a potential bioherbicidal effect for methyl cinnamate, and its application might be useful in wheat crops infested by L. rigidum. We suggest that collecting A. dealbata flowers would prevent Acacia seed formation and thus play a role in invasive pest management, as well as serving as a source of potential herbicides to other species.
Soybean [Glycine max (L.) Merr.] has recently become a popular rotational crop in the Canadian Northern Great Plains where herbicide-resistant (HR) soybean cultivars have been widely adopted. Intense reliance on herbicides has contributed to the development of HR weeds in soybean and other crops. Cultural weed management practices reduce the need for herbicides and lower the selection pressure for HR weed biotypes by improving the competitiveness of the crop. The effects of two row spacings, three target densities, and three cultivars on the critical weed-free period (CWFP) in soybean were evaluated as three separate experiments in southern Manitoba. In the row-spacing experiment, soybean grown in narrow rows shortened the CWFP by up to three soybean developmental stages at site-years with increased weed pressure. In the target density experiment, low-density soybean stands lengthened the CWFP by one soybean developmental stage compared with higher-density soybean stands. The effect of soybean cultivar varied among locations, yet tended to be consistent within location over the 2-yr study, suggesting that competitive ability in these soybean cultivars was linked to edaphic and/or environmental factors. Generally, the cultivar with the shortest days to maturity, which also had the shortest stature, consistently had a longer CWFP. Each of these cultural practices were effective at reducing the need for in-crop herbicide applications.
Harvest weed seed control (HWSC) technology, such as impact mills that destroy weed seeds in seed-bearing chaff material during grain crop harvest, has been highly effective in Australian cropping systems. However, the impact mill has never been tested in soybeans [Glycine max (L.) Merr.] and weeds common to soybean production systems in the midwestern and mid-Atlantic United States. We conducted stationary testing of Harrington Seed Destructor (HSD) impact mill and winter burial studies during 2015 to 2016 and 2017 to 2018 to determine (1) the efficacy of the impact mill to target weed seeds of seven common weeds in midwestern and five in the mid-Atlantic United States, and (2) the fate of impact mill–processed weed seeds after winter burial. The impact mill was highly effective in destroying seeds of all the species tested, with 93.5% to 99.8% weed seed destruction in 2015 and 85.6% to 100% in 2017. The weak relationships (positive or negative) between seed size and seed destruction by impact mill and the high percentage of weed seed destruction by impact mill across all seed sizes indicate that the biological or practical effect of seed size is limited. The impact mill–processed weed seeds that retained at least 50% of their original size, labeled as potentially viable seed (PVS), were buried for 90 d overwinter to determine the fate of weed seeds after winter burial. At 90 d after burial, the impact mill–processed PVS were significantly less viable than unprocessed control seeds, indicating that impact mill processing physically damaged the PVS and promoted seed mortality overwinter. A very small fraction (<0.4%) of the total weed seed processed by the impact mill remained viable after winter burial. The results presented here demonstrate that the impact mill is highly effective in increasing seed mortality and could potentially be used as an HWSC tactic for weed management in this region.
Annual sowthistle (Sonchus oleraceus L.) is a broadleaf weed that is increasing in prevalence in the northern cropping regions of Australia. Being a member of Asteraceae family, this weed possesses many biological attributes needed to thrive in varying environments and under differing weed management pressures. Interference of this weed in a wheat (Triticum aestivum L.) crop was examined through field studies in 2016 and 2017. Different densities of S. oleraceus were evaluated for their potential to cause yield loss in wheat: 0.0 (weed-free), low (9 to 15 plants m–2), medium (29 to 38 plants m–2), and high (62 to 63 plants m–2). Based on the exponential decay model, 43 and 52 plants m–2 caused a yield reduction of 50% in 2016 and 2017, respectively. Yield components such as panicles per square meter and grains per panicle were affected by weed density. At the high weed infestation level, S. oleraceus produced a maximum of 182,940 and 192,657 seeds m–2 in 2016 and 2017, respectively. Sonchus oleraceus exhibited poor seed retention at harvest, as more than 95% of seeds were blown away by wind. Adverse effects on crop, high seed production, and wind-blown dispersal may lead to an increased prevalence of this weed in the absence of an integrated weed management strategy utilizing both herbicides and nonchemical options.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere