Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Weed invasion has become increasingly recognized as a major threat to the practice of sustainable agriculture and the maintenance of natural ecosystems around the world. Without effective and ongoing management strategies, many weed species have the aggressive capacity to alter ecosystem functions and reduce the economic potential of the land into which they have been introduced. Although traditional weed management strategies can be useful in eliminating certain weeds, these approaches can be costly, economically damaging, and laborious and can result in variable long-term success. To further add to these challenges, several weed species have now developed resistance to a range of herbicide modes of action, which, to date, have been the major mechanism of weed control. As a result, it is anticipated that the use of emerging technology will help to provide a solution for the economical and environmentally sustainable management of various weeds. Of particular interest, emerging technology in the areas of weed detection and control (chemical, mechanical, electrical, laser, and thermal) has shown promising signs of improving long-term weed management strategies. These methods can also be assisted by, or integrated alongside, other technology, such as artificial intelligence or computer vision techniques for improved efficiency. To provide an overview of this topic, this review evaluates a range of emerging technology used for the detection and control of various weeds and explores the challenges and opportunities of their application within the field.
Recently, there has been emphasis on the need to shift away from the use of synthetic chemical herbicides to low-risk alternatives derived from natural sources. This is aimed at lowering or averting the negative impact synthetic herbicides have on the environment and dealing with the emergence of weed species resistant to these chemicals. As a result, more stringent measures or outright bans on the use of most synthetic herbicides have been put in place by regulatory bodies. As seaweeds are abundant resources in the marine environment that have the capacity to produce diverse bioactive compounds, they could serve as sustainably viable, natural, and low-risk alternatives/sources to explore for potential phytotoxic capabilities. This could in turn help to enhance or boost the availability of effective solutions in the global bioherbicide market. This review highlights the prospects of using seaweeds as novel biopesticides for the control and management of various plant pests, including weed species, and for the development of sustainable agriculture/forestry practices. More specifically, it focuses on their use as a rich natural source for novel bioherbicide development, a potential that has remained underexplored for many years. However, to unlock the full potential of seaweed-derived bioherbicides and to create a potential path toward their development, increased research and development efforts are urgently needed to tackle and overcome possible constraints posed in this novel area, such as variability in seaweed chemical composition, formulation technologies, stability and efficacy of seaweed bioactive compounds, cost and scalability, and environmental considerations.
Quinclorac controls crabgrass (Digitaria spp.) in cool- and warm-season turfgrass species. Herbicide-resistant smooth crabgrass [Digitaria ischaemum (Schreb.) Schreb. ex Muhl.] biotypes have evolved due to recurrent usage of quinclorac. Two Mississippi populations (MSU1 and MSU2) of D. ischaemum were characterized using standard greenhouse dose–response screens to assess their resistance relative to known susceptible populations. Subsequent investigations explored mechanisms of resistance, including examining cyanide accumulation, glutathione S-transferase (GST) activity, and the potential involvement of cytochrome P450s in MSU1, MSU2, and a susceptible (SMT2). Resistant populations MSU1 and MSU2 required 80 and 5 times more quinclorac, respectively, to reach 50% biomass reduction than susceptible populations. The SMT2 biotype accumulated three times more cyanide than the resistant MSU1 and MSU2 populations. GST activity was elevated in resistant MSU1 and MSU2 populations. Furthermore, quinclorac concentrations in treated resistant populations were elevated when plants were pretreated with the P450 inhibitor malathion. These findings suggest a non–target site based mechanism of resistance involving the accumulation of cyanide. This may provide a scientific basis for understanding the occurrence of quinclorac-resistant D. ischaemum, although further research is needed to investigate potential target-site mechanisms of resistance.
The success of the insect sterile technique (IST) in managing insect pests raised the hypothesis that a similar approach could be employed to control weed populations. Here, we investigated the feasibility of employing irradiated sterile pollen as a means to disrupt seed production in dioecious weeds, specifically focusing on Palmer amaranth (Amaranthus palmeri S. Watson). Our goal was to determine the optimal irradiation dose that strikes a balance between inducing sterility and preserving competitiveness, as excessive doses could result in pollen mortality, while low doses may retain fertility. Plants were grown in a greenhouse during the summer of 2020 and spring of 2021. Once they reached the flowering stage, male and female individuals were isolated. Mature pollen samples were collected and exposed to varying dosages (0, 100, 200, 300, 400, and 500 Gy) of gamma rays. These irradiated and non-irradiated pollen samples were used in pollen viability assessments and hand-pollination experiments. In the hand-pollination study conducted in 2020, we employed six pollination treatments using different irradiation doses. The results showed that 300 Gy was the most effective dose, resulting in a maximum reduction of 30% in seed set compared with open pollination when irradiated pollen had prior access to the stigma through artificial pollination before open pollination. In 2021, to simulate real field conditions, three additional treatments were introduced into the study, further confirming the effectiveness of the optimal 300 Gy dose. Our findings indicate that the sterile pollen technique (SPT) using irradiated pollen can be a valuable approach for reducing weed seed production. SPT also holds potential for broad-spectrum weed control by mixing sterile pollen from multiple weed species in a single application. Additionally, it could aid in managing herbicide-resistant weeds that have survived in-season control efforts. This research contributes to the development of novel and sustainable weed management strategies.
Hedge cactus (Cereus uruguayanus R. Kiesling; syn.: Cereus hildmannianus K. Schum.) is a columnar cactus that was introduced to Australia as an ornamental plant and has since become invasive in subhumid regions of Queensland and New South Wales. Compared with its congener, queen of the night (Cereus jamacaru DC.), which is currently invasive in both eastern and southern Africa, information on seed biology of C. uruguayanus is lacking. Experiments were conducted to study the effects of alternating day/night temperature, salt stress, water stress, and burial depth on germination and seedling emergence of four seed accessions of C. uruguayanus. Seeds were also subjected to a controlled aging test (CAT) to obtain an estimate of potential persistence under field conditions. The optimum temperature regime for germination of all accessions was 30/20 C. Germination decreased with an increase in sodium chloride (NaCl) concentration, but germination of all accessions (range 26% to 81%) occurred at 160 mM NaCl, indicating very high salt tolerance. Seed germination gradually decreased with an increase in water stress, but germination in all accessions (range 19% to 47%) occurred at –0.8 MPa. Seed viability and dormancy status were unaffected by exposure to salt level (320 mM NaCl) and water (–1.6 MPa) stress under which germination did not occur. Germination responses to all three factors were generally similar to those documented for C. jamacaru. The emergence of C. uruguayanus decreased with an increase in seed burial depth. The highest emergence (43%) was recorded for surface-sown seeds, and emergence was reduced to 0 at a burial depth of 2 cm. CAT results for two seed accessions indicated that seeds of C. uruguayanus are likely to demonstrate extended (>3 yr) persistence under field conditions, a prediction that is supported by evidence that germination of its small (2-mm) seeds is markedly reduced by burial.
Globe artichoke [Cynara cardunculus L. var. scolymus (L.) Fiori] is one of the most important crops across the Mediterranean basin, where weeds are an important biotic constraint limiting crop yields. However, the effects of globe artichoke–cropping systems on weeds have been rarely tested. Following the demand for eco-friendly weed management practices, a multi-location trial (13 farms) was carried out, measuring weed seedbanks and aboveground communities within four globe artichoke–cropping systems: globe artichoke monoculture (ART), past cultivation of globe artichoke (8 to 10 yr ago) (past-ART), a globe artichoke–durum wheat (Triticum durum Desf.) rotation (ART-WHEAT), and a control where globe artichoke was never grown. Both below- and aboveground weed communities were dominated by annual therophytes, but a low correspondence was found between both types of communities. Averaged over farms, ART highly reduced both the weed soil seedbank (1,600 seeds m–2 on average) and the aboveground weed biomass (only 3.4 g dry weight m–2) compared with the control, with a decrease of 72% in the soil seedbank and 99% in the aboveground flora. Moreover, on the farms where globe artichoke was previously grown, a very low aboveground weed biomass (77% less than control) was found. In addition, ART contributed to the preservation of high levels of weed diversity (except for aboveground communities) and therefore avoided the creation of a specialized weed flora. In conclusion, we suggest the inclusion of globe artichoke into crop rotation schemes in Mediterranean agroecosystems as a sustainable tool for reducing both the soil weed seedbank and aboveground weeds, thus reducing the requirement of direct weed control methods and preserving the environment.
Soil amelioration via strategic deep tillage is occasionally utilized within conservation tillage systems to alleviate soil constraints, but its impact on weed seed burial and subsequent growth within the agronomic system is poorly understood. This study assessed the effects of differen strategic deep-tillage practices, including soil loosening (deep ripping), soil mixing (rotary spading), or soil inversion (moldboard plow), on weed seed burial and subsequent weed growth compared with a no-till control. The tillage practices were applied in 2019 at Yerecoin and Darkan, WA, and data on weed seed burial and growth were collected during the following 3-yr winter crop rotation (2019 to 2021). Soil inversion buried 89% of rigid ryegrass (Lolium rigidum Gaudin) and ripgut brome (Bromus diandrus Roth) seeds to a depth of 10 to 20 cm at both sites while soil loosening and mixing left between 31% and 91% of the seeds in the top 0 to 10 cm o soil, with broad variation between sites. Few seeds were buried beyond 20 cm despite tillage working depths exceeding 30 cm at both sites. Soil inversion reduced the density of L. rigidum to <1 plant m–2 for 3 yr after strategic tillage. Bromus diandrus density was initially reduced to 0 to 1 plant m–2 by soil inversion, but increased to 4 plants m–2 at Yerecoin in 2020 and 147 plants a Darkan in 2021. Soil loosening or mixing did not consistently decrease weed density. The field data were used to parameterize a model that predicted weed density following strategic tillage with greater accuracy for soil inversion than for loosening or mixing. The findings provide important insights into the effects of strategic deep tillage on weed management in conservational agricultural systems and demonstrate the potential of models for optimizing weed management strategies.
Sweetpotato [Ipomoea batatas (L.) Lam.] is a staple crop that provides nutritional benefits to humans globally, but it is subject to yield loss when competing with weeds, especially during the early stage of establishment. Yield loss can vary widely based on the cultivar, production environment, weed species, and management techniques. To address this challenge, we conducted field research at the Samuel G. Meigs Horticulture Research Farm, Lafayette, IN, and at the Southwest Purdue Agricultural Center, Vincennes, IN, in 2022 to determine the effect of sweetpotato cultivar on the critical weed-free period. The experiment was a split-plot design, with weed-free interval treatments as the main plot factor and cultivar as the subplot factor. The three cultivars used were ‘Covington’, ‘Monaco’, and ‘Murasaki’. Weeds were removed by hand and allowed to establish and compete with the crop beginning at 0, 14, 21, 28, 35, or 42 d after transplanting (DAP). As the weed-free interval increased from 0 to 42 DAP, predicted total yield increased from 19 kg ha–1 to 20,540 kg ha–1 for Covington, 3 kg ha–1 to 11,407 kg ha–1 for Monaco, and 125 kg ha–1 to 13,460 kg ha–1 for Murasaki at the Lafayette location. At Vincennes, as the weed-free interval increased from 0 to 42 DAP, predicted total yield increased from 14,664 kg ha–1 to 33,905 kg ha–1 for Covington, 4,817 kg ha–1 to 18,059 kg ha–1 for Monaco, and 12,735 kg ha–1 to 21,105 kg ha–1 for Murasaki. A threshold of ≤10% total yield reduction was achieved by maintaining sweetpotatoes weed-free 24 DAP for Covington, 20 DAP for Murasaki, and 33 DAP for Monaco.
Johnsongrass [Sorghum halepense (L.) Pers.] is one of the most problematic perennial grass weed species in row-crop production across the southern United States. Control of this species is especially challenging in organic systems due to a lack of effective options. A field experiment was conducted at the Texas A&M research farm near College Station, TX, from fall 2019 to spring 2021 to evaluate various nonchemical options for managing S. halepense in the fallow season, implemented over 2 yr in the same locations. The treatments included disking once, disking twice, disking + immediate flooding, disking + flush irrigation + flooding, disking twice + flooding after the first frost, periodic mowing, acetic acid treatment, and disking + tarping. Disking + immediate flooding, disking + flush irrigation + flooding, and disking + tarping were the most effective treatments. Compared with the nontreated control plots, these treatments reduced S. halepense aboveground density (<9 plants m–2 vs. 64 plants m–2), aboveground biomass (<80 g m–2 vs. 935 g m–2), rhizome biomass (<4 g m–2 vs. 55 g m–2), rhizome node number (<25 nodes m–2 vs. 316 nodes m–2), and rhizome length (<42 cm m–2 vs. 660 cm m–2). Disking twice + flooding after the first frost did not show a consistent impact. Periodic mowing also reduced S. halepense density (12 plants m–2 vs. 64 plants m–2) and other variables compared with the control plots at the end of the study in spring 2021. Disking alone once or twice each growing season or repeated application of acetic acid failed to control S. halepense. These results indicate that well-timed nonchemical management practices such as tarping and flooding implemented during the winter fallow can be very effective in reducing S. halepense densities.
Cereal rye (Secale cereale L.) as a cover crop can be an effective nonchemical tool for waterhemp [Amaranthus tuberculatus (Moq.) Sauer] suppression in crop production. Previous studies have evaluated A. tuberculatus suppression by cereal rye as part of weed management programs but have not investigated the underlying mechanism of suppression by the cover crop. This study aimed to investigate the effect of cereal rye biomass on A. tuberculatus emergence and development, and on soil environmental parameters (temperature, moisture, and light transmittance) that are key triggers of A. tuberculatus germination to elucidate the mechanism of suppression by the cover crop. A dose–response study was conducted under field conditions in Brooklyn and Janesville, WI, from 2021 to 2023. Cereal rye biomass from a fall-planted field was harvested at anthesis in the spring and dried to constant weight at 60 C to provide 0.0, 0.6, 1.2, 2.4, 4.8, 7.2, 9.6, and 12.0 Mg ha–1 of dry biomass that was evenly distributed over 1.9 m–2 plots. Increasing cereal rye biomass reduced A. tuberculatus height, biomass, and density. An average ED50 of 5.2 Mg ha–1 of biomass was needed to reduce A. tuberculatus density by 50%. Low levels of biomass (≤2.38 Mg ha–1) augmented A. tuberculatus density due to an increase in soil moisture underneath the mulch compared with bare soil. Cereal rye biomass decreased the amount of sunlight reaching the soil, which resulted in lower mean soil temperature and temperature amplitude throughout the day (9.3 and 2.7 C temperature amplitude at 0 and 12.0 Mg ha–1, respectively). Prevention of A. tuberculatus germination by this thermal effect is likely the main mechanism of A. tuberculatus suppression from the cereal rye cover crop. Our results support biomass from cereal rye cover crop effectively suppressing A. tuberculatus and contributing to the integrated management of A. tuberculatus.
Methiozolin is applied five or more times per year to control annual bluegrass (Poa annua L.) in cool, temperate areas, but high market demand in the southern United States and recent registration in Australia has expanded the product's use in variable climates. To better design weed control programs for variable turf types, more information is needed to characterize methiozolin dissipation in different turf systems. Methiozolin was applied biweekly three times to a Kentucky bluegrass (Poa pratensis L.) lawn and adjacent bare soil in New Jersey and on 12 hybrid bermudagrass [Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt Davy] putting greens in Virginia. Soil samples were collected immediately following each application and biweekly for 12 additional weeks. Methiozolin was extracted from each soil sample and analyzed using liquid chromatography with tandem mass spectrometry. Methiozolin was detected only within the top 2 cm of the soil (including verdure), but not below 2 cm, demonstrating its limited vertical mobility. Dissipation was significantly faster in turf-covered soil compared with bare soil. The time required for 50% methiozolin dissipation was 13 and 3.5 d in bare soil and turf-covered soil, respectively. In Virginia, methiozolin dissipation in the 1-m span of three sequential applications differed between years. Methiozolin concentration immediately following the third biweekly application to C. dactylon ×transvaalensis greens was approximately 105% and 180% of the concentration immediately following the initial application, in 2021 and 2022, respectively. This difference in methiozolin accumulation following three applications was attributed to differential C. dactylon ×transvaalensis green up during methiozolin treatments each year. Despite differences in posttreatment methiozolin concentration between years, the temporal dissipation rate later into the summer was consistent. Following the final application on C. dactylon ×transvaalensis greens, methiozolin dissipated 50% and 90% in 14 and 46 d, respectively. These data suggest that methiozolin dissipates more rapidly in turfgrass systems than in bare soil.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere