Open Access
How to translate text using browser tools
9 December 2010 A phylogenetic analysis of Pfeiffera and the reinstatement of Lymanbensonia as an independently evolved lineage of epiphytic Cactaceae within a new tribe Lymanbensonieae
Nadja Korotkova, Leonie Zabel, Dietmar Quandt, Wilhelm Barthlott
Author Affiliations +
Abstract

Pfeiffera is a genus of epiphytic, terrestrial and epilithic cacti. Its acceptance, circumscription and closest relatives have been debated. In the context of a phylogenetic survey of epiphytic cacti, we have studied relationships in Pfeiffera, sampling eight of nine species and using sequence data from three group II introns (trnK, rpl16, trnG), four intergenic spacers (psbA-trnH, trnQ-rpsl6, rps3-rpl16, trnS-trnG) and the rapidly evolving gene matK of the plastid genome. Phylogenetic analyses revealed Pfeiffera to be polyphyletic, comprising two unrelated lineages, both highly supported. One clade includes the type species, P. ianthothele; the second contains two Pfeiffera and an erstwhile Lepismium species. Our results justify generic status for this newly found clade. Since it includes the type species of the earlier-proposed monotypic genus Lymanbensonia, we suggest the reinstatement of the latter in an amplified circumscription. The necessary new combinations for Pfeiffera brevispina and Lepismium incachacanum are provided. Our results further support the establishment of a separate tribe Lymanbensonieae, formally proposed here, to contain Lymanbensonia and Calymmanthium. The phylogenetic results imply that epiphytism evolved more frequently in Cactaceae than hitherto assumed and further show that morphological convergences in the family can be extreme. An integrated approach using morphology and sequence data is therefore needed to establish sound generic limits in the Cactaceae.

See the PDF.

References

1.

S. Arias , T. Terrazas & K. Cameron 2003: Phylogenetic analysis of Pachycereus (Cactaceae, Pachycereeae) based on chloroplast and nuclear DNA sequences. — Syst. Bot. 28: 547–557. Google Scholar

2.

S. Arias , T. Terrazas , H. J. Arreola-Nava , M. Vazquez-Sanchez & K. M. Cameron 2005: Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data. — J. Pl. Res. 118: 317–328. [  CrossRefGoogle Scholar

3.

C. Backeberg 1959: Die Cactaceae. Handbuch der Kakteenkunde 2. — Jena: Gustav Fischer. Google Scholar

4.

C. Backeberg 1966: Das Kakteen Lexikon. — Jena: Gustav Fischer. Google Scholar

5.

W. Barthlott 1979: Cacti. — Cheltenham: Stanley Thornes. Google Scholar

6.

W. Barthlott 1987: New names in Rhipsalidinae (Cactaceae). — Bradleya 5: 97–100. Google Scholar

7.

W. Barthlott 1988: Über die systematische Gliederung der Cactaceae. — Beitr. Biol. Pflanzen 63: 17–40. Google Scholar

8.

W. Barthlott & D. Hunt 1993: Cactaceae. — Pp. 161–197 in: K. Kubitzki (ed.), The families and genera of vascular plants 2. — Berlin: Springer. Google Scholar

9.

W. Barthlott & W. Rauh 1987: Pfeiffera miyagawae, a new orange flowered species from Bolivia. — Cact. Suce. J. (Los Angeles) 59: 63–65. Google Scholar

10.

W. Barthlott & N. P. Taylor 1995: Notes towards a monograph of Rhipsalideae (Cactaceae). — Bradleya 13: 43–79. Google Scholar

11.

R. Bauer 2005: More notes on Pfeiffera. — Cactaceae Syst. Init. 20: 6–10. Google Scholar

12.

A. Berger 1926: Die Entwicklungslinien der Kakteen. — Jena: Gustav Fischer. Google Scholar

13.

T. Borsch & D. Quandt 2009: Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA. —  Pl. Syst. Evol. 282: 169–199. [  CrossRefGoogle Scholar

14.

T. Borsch , K. W. Hilu , D. Quandt , V. Wilde , C. Neinhuis & W. Barthlott 2003: Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. —  J. Evol. Biol. 16: 558–576. [  CrossRefGoogle Scholar

15.

N. L. Britton & J. N. Rose 1923: The Cactaceae. Descriptions and illustrations of plants of the cactus family 4. — Washington: Carnegie Institution. Google Scholar

16.

C. A. Butterworth & R. S. Wallace 2004: Phylogenetic studies of Mammillaria (Cactaceae) – insights from chloroplast sequence variation and hypothesis testing using the parametric bootstrap. —  Amer. J. Bot. 91: 1086–1098. [  CrossRefGoogle Scholar

17.

C. A. Butterworth & R. S. Wallace 2005: Molecular phylogenetics of the leafy cactus genus Pereskia (Cactaceae). —  Syst. Bot. 30: 800–808. [  CrossRefGoogle Scholar

18.

C. A. Butterworth , J. H. Cota-Sanchez & R. S. Wallace 2002: Molecular systematics of tribe Cacteae (Cactaceae: Cactoideae): a phylogeny based on rpl16 intron sequence variation. — Syst. Bot. 27: 257–270. Google Scholar

19.

F. Buxbaum 1962: Das phylogenetische System der Cactaceae. — Unpaged in: H. Krainz (ed.). Die Kakteen 8. — Stuttgart: Kosmos. Google Scholar

20.

F. Buxbaum 1967: Der gegenwärtige Stand der stammesgeschichtlichen Erforschung der Kakteen. — Kakteen Sukk. 18: 6–9. Google Scholar

21.

F. Buxbaum 1971: Gattung Pfeiffera. – Unpaged in: H. Krainz (ed.), Die Kakteen 4. — Stuttgart: Kosmos. Google Scholar

22.

A. P. de Candolle 1828: Prodromus systematis naturalis regni vegetabilis 3. — Paris: Treuttel & Wuertz. Google Scholar

23.

D. S. Devey , M. W. Chase & J. J. Clarkson 2009: A stuttering start to plant DNA barcoding: microsatellites present a previously overlooked problem in non-coding plastid regions. —  Taxon 58: 7–15. Google Scholar

24.

E. J. Edwards , R. Nyffeler & M. J. Donoghue 2005: Basal cactus phylogeny: implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. —  Amer. J. Bot. 92: 1177–1188. Google Scholar

25.

D. Edwards , A. Horn , D. Taylor , V. Savolainen & J. A. Hawkins 2008: DNA barcoding of a large genus, Aspalathus L. (Fabaceae). —  Taxon 57: 1317–1327. [  CrossRefGoogle Scholar

26.

U. Eggli & D. C. Zappi 2003: Repert. Pl. Succ. 53. Google Scholar

27.

P. Erixon & B. Oxelman 2008: Reticulate or tree-like chloroplast DNA evolution in Sileneae (Caryophyllaceae)? —  Mol. Phylogenet. Evol. 48: 313–325. [  CrossRefGoogle Scholar

28.

F. W. Ganong 1898: Contributions to a knowledge of the morphology and ecology of the Cactaceae: II. The comparative morphology of the embryos and seedlings. — Ann. Bot. 12: 423–474. Google Scholar

29.

A. Gibson & P. S. Nobel 1986: The cactus primer. — Cambridge: Harvard University. Google Scholar

30.

K. W. Hilu & H. P. Liang 1997: The matK gene: sequence variation and application in plant systematics. —  Amer. J. Bot. 84: 830–839. [  CrossRefGoogle Scholar

31.

J. P. Huelsenbeck & F. Ronquist 2001: MrBayes: Bayesian inference of phylogenetic trees. —  Bioinformatics 17: 754–755. [  CrossRefGoogle Scholar

32.

D. Hunt 1998: CCI Workshop at Milborne Port, 5–8 April 1998. — Cactaceae Consensus Init. 5: 1–4. Google Scholar

33.

D. Hunt 2003: Reductio ad absurdum. — Cactaceae Syst. Init. 15: 2–3. Google Scholar

34.

D. Hunt 2006: The New Cactus Lexicon. — Milborne Port: dh Books. Google Scholar

35.

D. Hunt & N Taylor (ed.) 2002: Notulae systematicae Lexicon Cactacearum spectantes II. — Cactaceae Syst. Init. 14: 7–19. Google Scholar

36.

P. L. Ibisch , M. Kessler , S. Nowicki & W. Barthlott 2000: Ecology, biogeography and diversitiy of the Bolivian epiphytic cacti, with the description of two new taxa. — Bradleya 18: 2–30. Google Scholar

37.

L. A. Johnson & D. E. Soltis 1995: Phylogenetic inference in Saxifragaceae s.str. and Gilia (Polemoniaceae) using matK sequences. —  Ann. Missouri Bot. Gard. 82: 149–175. [  CrossRefGoogle Scholar

38.

S. A. Kelchner 2000. The evolution of non-coding chloroplast DNA and its application in plant systematics. —  Ann. Missouri Bot. Gard. 87: 482–498. [  CrossRefGoogle Scholar

39.

M. Kimnach 1983: A revision of Acanthorhipsalis. – Cact. Succ. J. (Los Angeles) 55: 177–182. Google Scholar

40.

M. Kimnach 1984: Rhipsalis brevispina. — Cact. Succ. J. (Los Angeles) 56: 122–124. Google Scholar

41.

W. J. Kress 1989: The systematic distribution of vascular epiphytes. — Pp. 234–261 in: U. Lüttge (ed.), Vascular plants as epiphytes. — Berlin: Springer. Google Scholar

42.

W. J. Kress , K. J. Wurdack , E. A. Zimmer , L. A. Weigt & D. H. Janzen 2005: Use of DNA barcodes to identify flowering plants. —  Proc. Natl. Acad Sci. USA 102: 8369–8374. [  CrossRrfGoogle Scholar

43.

C. Löhne & T. Borsch 2005: Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. —  Mol. Biol. Evol. 22: 317–332. [  CrossRefGoogle Scholar

44.

C. Löhne , T. Borsch & J. H. Wiersema 2007: Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. — Bot. J. Linn. Soc. 154: 141–163. [  CrossRefGoogle Scholar

45.

J. McNeill , F. R. Barrie , H. M. Burdet , V. Demoulin , D. L. Hawksworth , K. Marhold , D. H. Nicolson , J. Prado , P. C. Silva , J. E. Skog , J. H. Wiersema & N. J. Turland (ed.) 2006: International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. — Regnum Veg. 146. Google Scholar

46.

D. H. Mathews , M. Zuker & D. H. Turner 1996+: RNAstructure 5.0. — Published at  http://rna.urmc.rochester.edu/RNAstructure.htmlGoogle Scholar

47.

D. Metzing & R. Kiesling 2008: The study of cactus evolution: the pre-DNA era. — Haseltonia 14: 6–25. Google Scholar

48.

K. Müller 2004: PRAP, computation of Bremer support for large data sets. —  Molec. Phylogenet. Evol. 31: 780–782. [  CrossRefGoogle Scholar

49.

K. Müller 2005a: The efficiency of different search strategies in estimating parsimony jackknife, bootstrap, and Bremer support. — BMC Evol. Biol. 5: 58. [  CrossRefGoogle Scholar

50.

K. Müller 2005b: SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. —  Appl. Bio-informatics 4: 65–69. Google Scholar

51.

K. Müller & T. Borsch 2005: Phylogenetics of Amaranthaceae based on matK/trnK sequence data: evidence from Parsimony, Likelihood and Bayesian analyses. — Ann. Missouri Bot. Gard. 92: 66–102. Google Scholar

52.

J. Müller , K. Müller , C. Neinhuis & D. Quandt 2005+: PhyDE: Phylogenetic Data Editor. — Published at  www.phyde.deGoogle Scholar

53.

R. Nyffeler 2000: Should Pfeiffera be resurrected? — Cactaceae Syst. Init. 10: 10–11. Google Scholar

54.

R. Nyffeler 2002: Phylogenetic relationships in the cactus family f Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. —  Amer. J. Bot. 89: 312–326. [  CrossRefGoogle Scholar

55.

D. Posada 2008: jModelTest: phylogenetic model averaging. —  Mol. Biol. Evol. 25: 1253–1256. Google Scholar

56.

D. Quandt & M. Stech 2004: Molecular evolution and phylogenetic utility of the chloroplast trnT-trnF region in bryophytes. —  Pl. Biol. 6: 545–554. [  CrossRefGoogle Scholar

57.

D. Quandt , K. Müller & S. Huttunen 2003: Characterisation of the chloroplast DNA psbT-H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. — Pl. Biol. 5: 400–410. [  CrossRefGoogle Scholar

58.

A. Rambaut & A. J. Drummond 2007: Tracer v1.5. — Published at  http://beast.bio.ed.ac.uk/Tracer  Google Scholar

59.

C. M. Ritz , L. Martinss , R. Mecklenburg , V. Goremykin & F. H. Hellwig 2007: The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. —  Amer. J. Bot. 94: 1321–1332. [  CrossRefGoogle Scholar

60.

J. Salm-Dyck 1845: Cacteae in Horto Dyckensi cultae anno 1844. — Paris: Crapelet. Google Scholar

61.

J. Salm-Dyck 1850: Cacteae in Horto Dyckensi cultae, anno 1849. — Bonn: Henry & Cohen. Google Scholar

62.

K. M. Schumann 1899: Gesamtbeschreibung der Kakteen (Monographia Cactacearum). — Neudamm: Neumann. Google Scholar

63.

J. Shaw , E. B. Lickey , E. E. Schilling & R. L. Small 2007: Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. —  Amer. J. Bot. 94: 275–288. [  CrossRefGoogle Scholar

64.

J. Shaw , E. B. Lickey , J. T. Beck , S. B. Farmer , W. Liu , J. Miller , K. C. Siripun , C. T. Winder , E. E. Schilling & R. L. Small 2005: The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. —  Amer. J. Bot. 92: 142–166. [  CrossRefGoogle Scholar

65.

M. P. Simmons & H. Ochoterena 2000: Gaps as characters in sequence-based phylogenetic analyses. — Syst. Biol. 49: 369–381. [  CrossRefGoogle Scholar

66.

B. Stöver & K. Müller 2010: TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. — BMC Bioinformatics 11: 7. [  CrossRefGoogle Scholar

67.

D. L. Swofford 1998: PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). — Sunderland, Massachussets: Sinauer. Google Scholar

68.

K. Tesfaye , T. Borsch , K. Covers & E. Bekele 2007: Characterization of Coffea chloroplast microsatellites and evidence for the recent divergence of C. arabica and C. eugenioides chloroplast genomes. —  Genome 50: 1112–1129. [  CrossRefGoogle Scholar

69.

F. Vaupel 1925–26: Die Kakteen. Monographie der Cactaceae. — Berlin: Selbstverlag. Google Scholar

70.

R. S. Wallace 1995: Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny. — Bradleya 13: 1–12. Google Scholar

71.

R. S. Wallace & A. C. Gibson 2002: Evolution and systematics. — Pp. 1–21 in: P. S. Nobel (ed.), Cacti. Biology and uses. — Berkeley: University of California. Google Scholar

72.

S. Wicke & D. Quandt 2009: Universal primers for the amplification of the plastid trnK/matK region in land plants. — Anales Jard Bot. Madrid. 66: 285–288. [  CrossRefGoogle Scholar

73.

A. Worberg 2009: Non-coding and fast-evolving chloroplast genomic regions and their utility for reconstructing evolutionary relationships among eudicots: towards resolving the radiation of the rosids. — PhD. Thesis, Nees Institute for Biodiversity of Plants, University of Bonn. Google Scholar
© 2010 BGBM Berlin-Dahlem.
Nadja Korotkova, Leonie Zabel, Dietmar Quandt, and Wilhelm Barthlott "A phylogenetic analysis of Pfeiffera and the reinstatement of Lymanbensonia as an independently evolved lineage of epiphytic Cactaceae within a new tribe Lymanbensonieae," Willdenowia 40(2), 151-172, (9 December 2010). https://doi.org/10.3372/wi.40.40201
Published: 9 December 2010
KEYWORDS
Calymmanthium
convergence
Echinocereeae
epiphytism
Lepismium
molecular
phylogenetics
Back to Top