Open Access
How to translate text using browser tools
9 September 2011 Phylogenetics of the neotropical liana genus Pedersenia (Amaranthaceae: Gomphrenoideae) and discovery of a new species from Bolivia based on molecules and morphology
Thomas Borsch, Teresa Ortuño Limarino, Michael H. Nee
Author Affiliations +
Abstract

The monophyletic genus Pedersenia comprises eleven species in the Neotropics, one of which, P. volubilis, is here described as new to science, being an endemic of mixed semi-deciduous Bolivian-Tucuman Interandean lower subhumid forest at mid elevations of the Department of Santa Cruz, Bolivia. Among the liana species of Pedersenia, it differs by twining stems, synflorescences constituted by terminal stems of several metres and small, lanceolate leaves. It is also characterised by two synapomorphic substitutions in the matK CDS. Sequence data of trnK/matK show considerable divergence between morphologically very similar liana species of tropical evergreen broad-leaved forests from different geographical regions. The phylogeny suggests the only self-sustaining tree-like species from the dry inter-Andean valleys to be derived from lianas. Allopatric speciation fostered by the ecological and geographical differentiation of the forest communities may have led to morphologically cryptic species, underscoring the need for an integrated morpho-molecular revision of the genus Pedersenia.

See the PDF.

References

1.

-H. C. A. Agudelo 2008: Amaranthaceae. — Pp. 1–138 in: J. Betancur , G. Galeano & -C. J. Aguirre (ed.), Flora de Colombia 23. — Bogotá: Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Google Scholar

2.

C. Antezana & G. Navarro 2002: Contribución al análisis biogeográfico y catalogo preliminar de la flora de los valles secos interandinos del centro de Bolivia. — Revista Boliv. Ecol. Conserv. Amb. 12: 3–38. Google Scholar

3.

J. J. Bernhardi 1800: Systematisches Verzeichnis der Pflanzen, welche in der Gegend um Erfurt gefunden werden 1. — Erfurt: Hoyer. Google Scholar

4.

T. Borsch 1993: Amaranthaceae. — Pp. 18–26 in: L. Brako & J. Zarucchi (ed.), Catalogue of the flowering plants and gymnosperms of Peru / Catálogo de las angiospermas y gimnospermas del Perú. — Monogr. Syst. Bot. Missouri Bot. Gard. 45. Google Scholar

5.

T. Borsch 1995: Three new combinations in Pfaffia (Amaranthaceae) from the New World Tropics. —  Novon 5: 230–233. Google Scholar

6.

T. Borsch 1998: Pollen types in the Amaranthaceae, morphology and evolutionary significance. —  Grana 37: 129–142. Google Scholar

7.

T. Borsch 2001: Amaranthaceae. — Pp. 56–83 in: W. D. Stevens , C. Ulloa Ulloa , A. Pool & O. M. Montiel , Flora de Nicaragua 1. — Monogr. Syst. Bot. Missouri Bot. Gard. 85. Google Scholar

8.

T. Borsch & W. Barthlott 1998: Structure and evolution of metareticulate pollen. —  Grana 37: 68–78. Google Scholar

9.

T. Borsch , K. W. Hilu , D. Quandt , V. Wilde , C. Neinhuis & W. Barthlott 2003: Non-coding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. —  J. Evol. Biol. 16: 558–576. Google Scholar

10.

T. Borsch , T. Ortuño & M. Nee [in press]: Amaranthaceae. — In: P. M. Jorgensen & S. G. Beck (ed.). Catálogo de las plantas vasculares de Bolivia. — Monogr. Syst. Bot. Missouri Bot. Gard. Google Scholar

11.

T. Borsch & D. Quandt 2009: Mutational dynamics and phylogenetic utility of non-coding chloroplast DNA. —  Pl. Syst. Evol. 282: 169–199. Google Scholar

12.

R. Chodat & E. Hassler 1903: Plantae hasslerianae soit enumeration des plantes recoltées au Paraguay par le Dr Emile Hassler de 1885 à 1902. — Bull. Herb. Boissier, ser. 2, 3: 387–421. Google Scholar

13.

R. Chodat & L. Rehfous 1927: La vegetation du Paraguay XIV. Amarantacées. — Bull. Soc. Bot. Genève, ser. 2, 18: 246–294. Google Scholar

14.

A. Désamoré , B. Laenen , N. Devos , M. Popp , J. M. González Mancebo , M. A. Carine & A. Vanderpoorten 2001: Out of Africa: north-westwards Pleistocene expansions of the heather Erica arborea. —  J. Biogeogr. 38: 164–176. Google Scholar

15.

D. Dietrich 1839: Synopsis plantarum 1. — Weimar: Voigt. Google Scholar

16.

Dirección de ordenamiento territorial 2008: Mapa de vegetación, Potencial forestal ecológico y protección de la vegetación del departamento de Santa Cruz. — Santa Cruz: Gobierno Departamental Autónomo. Google Scholar

17.

R. E. Fries 1920: Zur Kenntnis der Süd- und Zentralamerikanischen Amaranthaceenflora. — Ark. Bot. 16: 1–43. Google Scholar

18.

M. Gurushidze , R. M. Fritsch & F. R. Blattner 2008: Phylogenetic analysis of Allium subg. Melanocrommyum infers cryptic species and demands a new sectional classification. —  Mol. Phylogenet. Evol. 49: 997–1007. Google Scholar

19.

K. W. Hilu , T. Borsch , K. Müller , D. E. Soltis , P. S. Soltis , V. Savolainen , M. W. Chase , M. Powell , M. A. Alice , R. Evans , H. Sauquet , C. Neinhuis , T. A. Slotta , J. G. Rohwer , C. S. Campbell & L. Chatrou 2003: Angiosperm phylogeny based on matK sequence information. —  Amer. J. Bot. 90: 1758–1776. Google Scholar

20.

J. Holub 1998: Trommsdorffia Bernh. 1800 is a validly published generic name. — Preslia 70: 179–182. Google Scholar

21.

P. I. Ibisch & G. Merida (ed.) 2004: Biodiversity: the richness of Bolivia. State of knowlegde and conservations. — Santa Cruz de la Sierra: FAN. Google Scholar

22.

IUCN 2001: IUCN Red List categories and criteria. Version 3.1. — Gland & Cambridge: IUCN. Google Scholar

23.

R. P. López 2000: La Prepuna boliviana. — Ecol. Bolivia 34: 45–70. Google Scholar

24.

R. P. López & T. Ortuño 2008: La influencia de los arbustos sobre la diversidad y abundancia de las plantas herbáceas de la prepuna a diferentes escalas espaciales. — Ecol. Austral. 18: 119–131. Google Scholar

25.

C. Löhne & T. Borsch 2005: Phylogenetic utility and molecular evolution of the petD group II intron in basal angiosperms. —  Molec. Biol. Evol. 22: 317–332. Google Scholar

26.

M. M. Martínez-Ortega , L. Delgado , D. C. Albach , J. A. Elena-Rosselló & E. Rico 2004: Species boundaries and phylogeographic patterns in cryptic taxa inferred from AFLP markers: Veronica subgen. Pentasepalae (Scrophulariaceae) in the Western Mediterranean. —  Syst. Bot. 29: 965–986. Google Scholar

27.

K. F. P. von Martius 1825: Beitrag zur Kenntnis der natürlichen Familie der Amarantaceen. — Bonn: E. Weber. Google Scholar

28.

K. F. P. von Martius 1826: Nova genera et species plantarum 2. — München: C. Wolf. Google Scholar

29.

R. I. Meneses , R. P. López , T. Ortuño & N. Kasuya 2009: Identificacion de zonas con valor de conservación en los valles secos interandinos (Chaco Serrano Seco). — Pp. 413–434 in: S. G. Beck , R. P. Paniagua , R. López & N. Nagashi (ed.), Biodiversidad y ecología en Bolivia — Simposio de los 30 años del Instituto de Ecología. — La Paz: Universidad Mayor de San Andrés. Google Scholar

30.

C. H. B. A. Moquin-Tandon 1849: Amaranthaceae. — Pp. 231–424 in: A. P. de Candolle (ed.), Prodromus systematis naturalis regni vegetabilis. — Paris: V. Masson. Google Scholar

31.

J. Müller , K. Müller , C. Neinhuis & D. Quandt 2005+: PhyDE. Phylogenetic Data Editor. — Published at  www.phyde.de  Google Scholar

32.

K. F. Müller 2004: PRAP — computation of Bremer support for large data sets. —  Molec. Phylogenet. Evol. 31:780–782. Google Scholar

33.

K. F. Müller & T. Borsch 2005: Phylogenetics of Amaranthaceae using matK/trnK sequence data; evidence from parsimony, likelihood and Bayesian approaches. — Ann. Missouri Bot. Gard. 92: 66–102. Google Scholar

34.

K. F. Müller , T. Borsch & K. W. Hilu 2006: Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK. trnT-F and rbcL in basal angiosperms. —  Mol. Phylogenet. Evol. 41: 99–117. Google Scholar

35.

G. Navarro & M. Maldonado 2002: Geografía y ecológica de Bolivia: Vegetación a ambientes acuáticos. — Cochabamba: Centro de Ecologia Simon I. Patiño. Google Scholar

36.

M. Nee 2004: Flora de la Región del Parque Nacional Amboró, Bolivia 2. — Santa Cruz de la Sierra: FAN. Google Scholar

37.

N. Kazuya , I. Gomez , R. L Meneses , J. Vargas & R. P. Lopez 2006: Comparación de modelos de distribución de especies para predecir la distribución potencial de vida silvestre en Bolivia. — Ecol. Bolivia 4: 65–78. Google Scholar

38.

T. Ortuño & T. Borsch 2006: A further new species of Gomphrena (Amaranthaceae, Gomphrenoideae) from the dry valleys of Bolivia. — Kew Bull. 61: 565–568. Google Scholar

39.

T. Ortuño & T. Borsch 2005: Dos nuevas especies de Gomphrena (Amaranthaceae, Gomphrenoideae) de los valles secos de Bolivia. — Novon 15: 180–189. Google Scholar

40.

T. M. Pedersen 1997: Studies in South American Amaranthaceae IV. — Adansonia 19: 217–246. Google Scholar

41.

T. M. Pedersen 2000: Studies in South American Amaranthaceae V. — Bonplandia 10: 83–112. Google Scholar

42.

R. Sage , T. L. Sage , R. W. Pearcy & T. Borsch 2007: The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. —  Amer. J. Bot. 94: 1992–2003. Google Scholar

43.

L Sánchez del-Pino , T. Borsch & T. Motley 2009: trnL-F and rpl16 sequence data and dense taxon sampling reveal monophyly of unilocular anthered Gomphrenoideae (Amaranthaceae) and an improved picture of their internal relationships. —  Syst. Bot. 34: 57–67. Google Scholar

44.

T. E. Saerkinen , J. L. Marcelo-Pena , A. D. Yomona , M. F. Simon , R. T. Pennington & C. E. Hughes 2011: Underestimated endemic species diversity in the dry inter-Andean valley of the Rio Maranon, northern Peru: An example from Mimosa (Leguminosae, Mimosoideae). —  Taxon 60: 139–150. Google Scholar

45.

M. P. Simmons & H. Ochoterena 2000: Gaps as characters in sequence-based phylogenetic analyses. —  Syst. Biol. 49: 369–381. Google Scholar

46.

S. Sotuyo , A. Delgado-Salinas , M. W. Chase , G. P. Lewis & K. Oyama 2007: Cryptic speciation in the Caesalpinia hintonii complex (Leguminoseae: Caesalpinioideae) in a seasonally dry Mexican forest. —  Ann. Bot. 100: 1307–1314. Google Scholar

47.

P. C. Standley 1917: Amaranthaceae. — Pp. 95–169 in: North American flora 21. — Bronx: New York Botanical Garden. Google Scholar

48.

K. Suessenguth 1934: Neue und kritische Amaranthaceen aus Süd- und Mittelamerika. — Repert. Spec. Nov. Regni Veg. 35: 298–337. Google Scholar

49.

D. L. Swofford 1998: PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). — Sunderland: Sinauer. Google Scholar

50.

The Plant List 2010: The Plant List, version 1. — Published at  http://www.theplantlist.org/ [accessed April 2011], Google Scholar

51.

B. Thiers 2008+ [continuously updated]: Index herbariorum: a global directory of public herbaria and associated staff. — New York Botanical Garden:  http://sweetgum.nybg.org/ih/Google Scholar

52.

E. B. Uline & W. L. Bray 1896: Synopsis of North American Amaranthaceae V. — Bot. Gaz. 21: 348–356. Google Scholar

53.

I. Urban 1907: Symbolae antillanae 5(2). — Lipsiae: Borntraeger. Google Scholar

54.

K. Watanabe , T. Kajita & J. Murata 2006: Chloroplast DNA variation and geographical structure of the Aristolochia kaempferi group (Aristolochiaceae). —  Amer. J. Bot. 93: 442–453. Google Scholar

55.

K. Weising & R. C. Gardner 1999: A set of universal PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. —  Genome 42: 9–19. Google Scholar

56.

S. Wicke & D. Quandt 2009: Universal primers for amplification of the trnK/matK region in land plants. — Anales Jard. Bot. Madrid 66: 285–288. Google Scholar

57.

C. L. Willdenow : 1806: Species plantarum, ed. 4, 4(2). – Berlin: G. C. Nauk. Google Scholar
© 2011 BGBM Berlin-Dahlem.
Thomas Borsch, Teresa Ortuño Limarino, and Michael H. Nee "Phylogenetics of the neotropical liana genus Pedersenia (Amaranthaceae: Gomphrenoideae) and discovery of a new species from Bolivia based on molecules and morphology," Willdenowia 41(1), 5-14, (9 September 2011). https://doi.org/10.3372/wi.41.41101
Published: 9 September 2011
KEYWORDS
Boliviano-Tucumano biogeographical province
cryptic species
Endemics
matK/trnK
molecular systematics
Pedersenia volubilis
Back to Top