Cristina Sotgia, Umberto Fascio, Giulio Melone, Fiorenza De Bernardi
Zoological Science 15 (3), 363-370, (1 June 1998) https://doi.org/10.2108/zsj.15.363
The swimming larvae of most solitary ascidians belonging to the Ascidiidae family bear three anterior, simple conic adhesive papillae. They secrete adhesive substances that are used to effect transitory settlement at the beginning of the metamorphosis.
The adhesive papillae of newly hatched Phallusia mamillata larvae examined by the SEM are covered by the tunic. When the larvae are about to settle, the tunic becomes fenestrated over the central part of the papilla and bulb-ended microvilli protrude through the holes. These papillae have two types of elongated cells: many peripheral cells and few larger central cells with microvilli and bundles of microtubules oriented along the major axis of the cells.
We have done immunofluorescence experiments with an anti-β-tubulin monoclonal antibody (clone 2-28-33) reacting with axonal microtubules. Only the central cells of the papillae were stained and the axons appeared to arise from the proximal ends of these cells. These axons form a long nerve that reaches the brain vesicle. Branches of the same nerve appear to connect to the basal ends of the peripheral cells. By confocal laser microscopy we were able to follow the course of the papillary nerve. The two nerves connecting the dorsal papillae fuse together into a single nerve that runs posteriorly. The nerve connecting the ventral papilla runs posteriorly for a long tract before fusing with the nerve of the dorsal papillae just near the brain.
The reported observations raise the hypothesis that the central cells of the adhesive papillae might be primary sensory neurons and that they may have chemosensory function.