Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
The 3rd axillary muscles (3AXMs) in the mesothorax in hawkmoths are direct flight muscles and pull forewings back along to the body axis. The 3AXMs are regarded as steering muscles because of their changeable activities during turning flight under tethered conditions. We investigated activities of the upper unit of the 3AXMs during free flight with a micro-telemetry device and captured body and wing movements by high-speed cameras. The 3AXM was activated with 1 to 3 spikes per each wingbeat cycle but sometimes ceased to fire. The phase of the onset of the activities was, even though it was variable, close to the phase of the elevator muscle activities. Therefore the upper unit of the 3AXM activities would affect upstroke properties phasically including wing retractions. We focused on longitudinal flight control and identified a correlation between the phase of the 3AXM and body pitch angle, which is important kinematical parameter for longitudinal control in insect flight. The phasic changes of the 3AXM activities would support quick changes in longitudinal control.
Membrane potential responses and tentacle movement of the marine dinoflagellate Noctiluca miliaris were recorded simultaneously and their time relationships were examined. The food-gathering tentacle of Noctiluca exhibited slow extension-flexion movements in association with the spontaneously recurring membrane potential responses termed the tentacle regulating potentials (TRPs). The flexion of the tentacle began during the slow depolarization of the TRPs. The rate of the flexion increased after the hyperpolarizing (negative) spike following the slow depolarization. The tentacle then extended slowly during the hyperpolarized level of the TRPs. A TRPs-associated flexion did not occur when the external Ca2 ions were removed. On the contrary, the tentacle showed conspicuous flexion (coiling) when the external Ca2 concentration was raised. In association with the stimulus-evoked action potential, which triggers bioluminescent flash (flash-triggering action potential; FTP), the tentacle coiled quickly. The FTP-associated coiling took place even in the Ca2 -deprived condition. The coupling mechanisms of the TRPs-associated and FTP-associated tentacle movements were compared, and their biological significance was discussed.
A complete single unit of a ribosomal RNA gene (rDNA) of M. croslandi was sequenced. The ends of the 18S, 5.8S and 28S rRNA genes were determined by using the sequences of D. melanogaster rDNAs as references. Each of the tandemly repeated rDNA units consists of coding and non-coding regions whose arrangement is the same as that of D. melanogaster rDNA. The intergenic spacer (IGS) contains, as in other species, a region with subrepeats, of which the sequences are different from those previously reported in other insect species. The length of IGSs was estimated to be 7–12 kb by genomic Southern hybridization, showing that an rDNA repeating unit of M. croslandi is 14–19 kb-long. The sequences of the coding regions are highly conserved, whereas IGS and ITS (internal transcribed spacer) sequences are not. We obtained clones with insertions of various sizes of R2 elements, the target sequence of which was found in the 28S rRNA coding region. A short segment in the IGS that follows the 3′ end of the 28S rRNA gene was predicted to form a secondary structure with long stems.
Karyotypes of females and males of the brackish-water polychaete Hediste japonica sensu stricto, collected from the Ariake Sea, Japan, were examined by using regenerating tails. We used the Giemsa staining method and a computer-assisted image-analyzing system for the identification of each chromosome pair. The somatic chromosome number was 2n=28. The presence of an XX–XY (male heterogametic) sex chromosome system was determined from well-spread metaphase plates of somatic cells. The type of sex chromosomes related with phenotype exactly. The metacentric Y chromosome was much larger than the submetacentric X chromosome. All autosomes were metacentric. The karyotype of this species was compared with those of the other two closely related species (H. diadroma and H. atoka). The karyotypes of all the three species were similar to one another.
The draft genome of the ascidian Ciona intestinalis has been sequenced. Mapping of the genome sequence to the Ciona 14 haploid chromosomes is essential for future studies of the genome-wide control of gene expression in this basal chordate. Here we describe an efficient protocol for fluores-cent in situ hybridization for mapping genes to the Ciona chromosomes. We demonstrate how the locations of two BAC clones can be mapped relative to each other. We also show that this method is efficient for coupling two so-far independent scaffolds into one longer scaffold when two BAC clones represent sequences located at either end of the two scaffolds.
Substructure of the myosin rod and its correlation to filament formation is largely based on studies of proteolytic digests and expressed proteins. However, tryptic digestion of myosin always produces polymorphous peptides. Consequently, it is difficult to determine the relation between myosin substructure and filament formation. Similarly, filament formation with recombinant myosin protein is also difficult to interpret because it is never clear whether the recombinant protein folds like the native protein. We recently reported a novel metal protease isolated from squid liver, astacin-like squid metalloprotease (ALSM), which can specifically hydrolyze in vitro myosin heavy chain. In the present study, we examined the solubility properties of the 65-kDa peptide and light meromyosin (LMM) prepared by ALSM isoform II and trypsin digestion, respectively. The 65-kDa peptide is much less soluble than LMM under physiological conditions, even though the length of 65-kDa peptide is shorter than that of LMM. These results suggest that a novel substructure of myosin drives filament assembly.
The raccoon dog (Nyctereutes procyonoides) is a canid omnivore with marked seasonal changes in its body adiposity. The aim of this study was to investigate the roles of melatonin, leptin, ghrelin and growth hormone (GH) in weight regulation and reproduction of the species. Sixteen raccoon dogs were treated with continuous-release melatonin implants in Aug 2000 and in Feb 2001 (the MEL group) and 16 animals were sham-operated (the SHAM group). Half of the raccoon dogs were fasted between Nov 27th 2000 and Jan 25th 2001. The autumnal results have been previously published and this paper reports the vernal data. The leptin concentrations of the SHAM females were high before the mating season, decreased before estrus, increased during gestation and reduced after parturition. The MEL females had higher leptin concentrations than the SHAM females in early March, whereas the MEL males had lower leptin concentrations than the SHAM males in late March. Also the ghrelin and GH concentrations of the SHAM females decreased before estrus. Continuous melatonin treatment advanced the vernal rise in the ghrelin concentrations and the vernal drop and the subsequent rise in the GH concentrations of the females. Melatonin also increased their body mass indices from July to Aug 2001, indicating that it triggers the autumnal accumulation of fat in the species.
Angiotensin I (ANG I) was isolated from incubates of plasma and kidney extracts of the river lamprey, Lampetra fluviatilis, using eel vasopressor activity as an assay during purification. Its sequence was Asn-Arg-Val-Tyr-Val-His-Pro-Phe-Thr-Leu as determined by the sequence analysis and mass spec-trometry. The sequence was confirmed by identity of the elution profile with the synthetic peptide in two different reverse-phase columns of high-performance liquid chromatography. Lamprey ANG I produced dorsal-aortic pressor responses in L. fluviatilis but the rise was very small in comparison to that produced by angiotensin II. Angiotensin III produced an even bigger increase. It was not possible to demonstrate a difference in response to Asn1 (lamprey) ANG I and Asp1 (human) ANG I. The present study directly demonstrated the presence and biological activity of the renin-angiotensin system in the most primitive extant vertebrates, the cyclostomes. Thus the renin-angiotensin system is a phylogenetically old hormonal system that is present throughout the vertebrates.
The larvae of Spodoptera litura were reared on an artificial diet, and the flight capability, and triacylglycerol (TG) level plus its fatty acid composition in 3-day-old sexually mature and non-fed adults were compared. In males, during 3 hr of tethered flight, the levels of abdominal TG and its fatty acid components did not change. But thereafter the TG and fatty acids, significantly unsaturated fatty acids in TG declined in their levels with the prolongation of flight, unsaturated fatty acids being exhausted preceding saturated fatty acid decline. When males were tested by tethered flight for 20 hr, some could fly for nearly the whole period, and were judged to be able to fly for approximately 24 hr, depending on the level of residual TG. Fatty aids in TG decreased in females similarly to males during tethered flight and some females with fully developed ovaries deposited eggs after 12 hr of flight similarly to non-flown individuals, which supports the long-distance flight capability even in sexually mature females. These results are discussed with regard to the overseas migration of this moth.
Peak preovipositional flight season and peak preovipositional flight time of day were compared among 12 species of Nemouridae, Chloroperlidae, Perlodidae and Perlidae. Species with a later peak date of preovipositional flight were found to have a later peak preovipositional flight time of day than species with an earlier peak in preovipositional flight season. A later peak preovipositional flight season correlated with a lower light intensity. Similarly, a later peak preovipositional flight time of day correlated with a lower light intensity and a later sunset. Individuals of one species (Sweltsa sp.), whose preovipositional flight date was later, flew over the stream at a later time of day. Species differences in peak preovi-positional flight season and peak preovipositional flight time of day may be driven by species specific sensitivity for different light intensities.
Larvae of the blow fly, Lucilia sericata (Meigen), enter diapause in the third instar after cessation of feeding. The effects of temperature and photoperiod on the termination of diapause were examined. The diapause terminated spontaneously under the diapause-inducing condition of 20°C and LD 12:12, although pupariation was not synchronous. Diapause development proceeded under a low temperature of 7.5°C. Transfer to long-day conditions of LD 16:8 or to a high temperature of 25°C induced prompt and synchronous pupariation. Low temperatures in winter probably play a predominant role in the termination of diapause under natural conditions.
The subphylum Cephalochordata (lancelets) is a relatively small taxonomic group in contrast to the subphyla Urochordata and Vertebrata. As an initial step to determine whether lancelets exhibit small genetic divergence in keeping with their conservative body organization or large genetic variation, four Branchiostoma species from the Pacific (B. belcheri and B. malayanum) and Atlantic (B. floridae and B. lanceolatum) Oceans were genetically compared using partial mitochondrial DNA sequences of the cyto-chrome oxidase c subunit I (COI) and 16S ribosomal RNA (16S rRNA) genes. In both genes, large genetic differences were revealed between the Pacific and Atlantic species, as well as within the former. Two maximum-likelihood trees from the COI and 16S rRNA genes showed that the Pacific and Atlantic lancelets were reciprocally clustered into different clades. Furthermore, both gene trees consistently exhibited deep phylogenetic separation between the two oceans. The estimated divergence time suggested that differentiation may have followed the migration of ancestral lancelets from the Pacific to the Atlantic Oceans via the Tethys Sea.
A new species of the genus Sabellaria Lamarck, 1812 (Annelida: Polychaeta: Sabellariidae), is described from shallow water off Tottori, the Sea of Japan. Sabellaria tottoriensis n. sp., is gregarious with tubes constructed of sand and shell debris. The new species is distinguished by the character combination of 1 or 2 pairs of nuchal spines, two forms (long and short) of opercular paleae in the middle row, with the slender blades of long ones recurved outward. Detailed morphological features of the species are described and compared with other Japanese and worldwide congeners.
Ancient mitochondrial DNA (mtDNA) mainly from Jomon Period Sus scrofa bone specimens (6,100–1,700 years old) was examined to clarify the genetic relationships between prehistoric and contemporary S. scrofa on Hokkaido, Honshu, Sado, and Izu islands of the Japanese Archipelago. Phylogenetic analysis of the mtDNA control region (574 bp) and analysis of pairwise nucleotide differences between prehistoric and contemporary S. scrofa sequences showed the following relationships between these groups: (1) a group genetically similar to contemporary Japanese wild boars was found mainly on Honshu Island, Hokkaido Island, and the Izu Islands, and (2) a monophyletic group distinct from contemporary Japanese wild boars was found on Sado Island. These results suggest that prehistoric people introduced S. scrofa from Honshu Island to Hokkaido Island and the Izu Islands. The estimated divergence times between the prehistoric Sado group and the other prehistoric S. scrofa is approximately congruent with the geological isolation of Sado Island from Honshu Island. Our results suggest that this extinct S. scrofa population was present on Sado Island as recently as around 2,000 years ago.
The white-spotted charr (Salvelinus leucomaenis) is a coldwater-adapted fish distributed in far-eastern Asia. To assess phylogeographic patterns of this species over most of its range in the Japanese archipelago and Sakhalin Island, Russia, we examined nucleotide sequences of the mitochondrial DNA (mtDNA) cytochrome b region (557 bp) in 141 individuals from 50 populations. A total of 33 (5.5%) nucleotide positions were polymorphic and defined 29 haplotypes. Phylogenetic analysis assigned the observed haplotypes to four main clades, which were characterized by the idiosyncrasies and discontinuity of geographic distributions. The nested clade analyses revealed that the geographical distribution patterns of some haplotypes and clades were explained by historical event such as past fragmentation. Although substantial genetic differentiation was found among the four main clades, their geographic distributions overlapped extensively in several regions. Since white-spotted charr can potentially use both freshwater and marine environments, coexistence among different lineages can be attributed to secondary contact through range expansion by migratory individuals during multiple glacial periods after interglacial isolation. Finally, our data demonstrate that the current subspecies designation does not reflect the phylogeography of this species based on mtDNA analysis. Hierarchical analysis (AMOVA) also showed that genetic variation was far more pronounced within subspecies than among subspecies (i.e., among discrete regions). These results suggest that each population, rather than each subspecies, must be treated as an evolutionarily significant unit.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere