Although the dog is widely used to analyze the function of the brain, it is not known whether the distribution of calcium-binding proteins reflects a specific pattern in the visual cortex. The distribution of neurons containing calcium-binding proteins, calbindin D28K, calretinin, and parvalbumin in adult dog visual cortex were studied using immunocytochemistry. We also compared this labeling to that of gamma-aminobutyric acid (GABA). Calbindin D28K-immunoreactive (IR) neurons were predominantly located in layer II/III. Calretinin- and parvalbumin-IR neurons were located throughout the layers with the highest density in layers II/III and IV. The large majority of calbindin D28K-IR neurons were multipolar stellate cells. The majority of the calretinin-IR neurons were vertical fusiform cells with long processes traveling perpendicular to the pial surface. And the large majority of parvalbumin-IR neurons were multipolar stellate and round/oval cells. More than 90% of the calretinin- and parvalbumin-IR neurons were double-labeled with GABA, while approximately 66% of the calbindin D28K-IR neurons contained GABA. This study elucidates the neurochemical structure of calcium-binding proteins. These data will be informative in appreciating the functional significance of different laminar distributions of calcium-binding proteins between species and the differential vulnerability of calcium-binding proteins-containing neurons, with regard to calcium-dependent excitotoxic procedures.
How to translate text using browser tools
1 September 2011
Immunocytochemical Localization of Calcium-Binding Proteins, Calbindin D28K-, Calretinin-, and Parvalbumin-Containing Neurons in the Dog Visual Cortex
Song-Hee Yu,
Jea-Young Lee,
Chang-Jin Jeon
ACCESS THE FULL ARTICLE
<
Previous Article
|
Zoological Science
Vol. 28 • No. 9
September 2011
Vol. 28 • No. 9
September 2011
calcium-binding proteins
gamma-aminobutyric acid
immunocytochemistry
localization
visual cortex