Dry bean (Phaseolus vulgaris L.), potato (Solanum tuberosum L.), wheat (Triticum aestivum L.), and sugar beet (Beta vulgaris L.) are mainstays of irrigated crop production in southern Alberta. Concerns about soil quality and sustainability instigated a 12 yr (2000–2011) rotation study to compare conventional (CONV) with conservation (CONS) management practices (reduced tillage, narrow-row dry bean, compost addition, and cover cropping). Plant-available water (PAW) was measured using a neutron probe (10–16 count days·season−1, n = 148) on all phases of 4 yr (dry bean–potato–wheat–sugar beet) rotations under CONS and CONV management. A visual monitoring approach was used for irrigation scheduling. For dry bean and sugar beet, management allowable depletion (MAD) was exceeded on only 11%–15% of neutron probe count days over 12 yr. However, MAD was exceeded on 30% of count days for wheat and 43% for potato. Significant crop × management interactions showed that PAW was higher with CONS management most frequently on potato, followed by dry bean, wheat, and sugar beet. This order reflected the prevalence of CONS practices directly impacting each crop. Regression analyses showed that potato, wheat, and sugar beet yield increased significantly as mean growing season water table depth (WTD) increased. This was explained by yield suppression due to excessive soil wetness in seasons with high rainfall and shallow WTD. This study provided comparative soil water dynamics for four major irrigated crops in southern Alberta, over a 12 yr period, which included record high and low growing season precipitation.
How to translate text using browser tools
2 October 2020
Soil water dynamics over 12 seasons on irrigated dry bean–potato–wheat–sugar beet rotations
Francis J. Larney,
Drusilla C. Pearson,
Gregg H. Dill,
Timothy D. Schwinghamer,
Francis Zvomuya,
Robert E. Blackshaw,
Newton Z. Lupwayi
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Canadian Journal of Soil Science
Vol. 101 • No. 2
June 2021
Vol. 101 • No. 2
June 2021
crop rotation
Irrigation
soil conservation
soil water