Biochar, a carbon (C)-rich material produced by the pyrolysis of organic residues, is frequently used as a soil amendment to enhance soil fertility and improve soil properties in tropical climates. However, in temperate agriculture, the impact of biochar on soil and plant productivity remains uncertain. The objective of this review is to give an overview of the challenges and opportunities of using biochar as an amendment in temperate soils. Among the various challenges, the type of feedstock and the conditions during pyrolysis produces biochars with different chemical and physical properties, resulting in contrasting effects on soils and crops. Furthermore, biochar aging, biochar application rates, and its co-application with mineral fertilizer and (or) organic amendments add further complexity to our understanding of the soil-amendment-plant continuum. Although its benefits on crop yield are not yet well demonstrated under field studies, other agronomic benefits of biochar in temperate agriculture have been documented. In this review, we proposed a broader view of biochar as a temperate soil amendment, moving beyond our current focus on crop productivity, and instead target its capacity to improve soil properties. We explored biochar’s benefits in remediating low-productive agricultural lands and its environmental benefits through long-term C sequestration and reduced nutrient leaching while curtailing our reliance on fertilizer input. We also discussed the persistence of beneficial impacts of biochar in temperate field conditions. We concluded that biochar displays great prospective to improve soil health and its productivity, enhance plant stress resilience, mitigate greenhouse gas emissions, and restore degraded soils in temperate agriculture.
How to translate text using browser tools
12 August 2021
Biochar in temperate soils: opportunities and challenges
Vicky Lévesque,
Maren Oelbermann,
Noura Ziadi
Canadian Journal of Soil Science
Vol. 102 • No. 1
March 2022
Vol. 102 • No. 1
March 2022
biochar aging
carbon sequestration
crop resilience
qualité du sol
résilience des cultures
séquestration du carbone
soil health