Open Access
How to translate text using browser tools
1 December 2013 Floristic Traits and Biogeographic Characterization of the Gennargentu Massif (Sardinia)
Gianluigi Bacchetta, Giuseppe Fenu, Riccardo Guarino, Giovanni Mandis, Efisio Mattana, Giovanni Nieddu, Carmine Scudu
Author Affiliations +
Abstract

Bacchetta, G., G. Fenu, R. Guarino, G. Mandis, E. Mattana, G. Nieddu & C. Scudu (2013). Floristic traits and biogeographic characterization of the Gennargentu massif (Sardinia). Candollea 68: 209–220. In English, English and French abstracts.

A study on the vascular flora of the Gennargentu Massif (Central-Eastern Sardinia) is presented. According to our results, the flora consists of 948 taxa: 686 species, 249 subspecies, 10 varieties and 3 hybrids, belonging to 97 families and 427 genera. Three taxa are new findings for the flora of Italy and eight for that of Sardinia. Life form analysis revealed, in particular, dominance of 35.65% hemicryptophytes, 34.6% therophytes, 12.13% geophytes and 11.6% (nano)-phanerophytes. As concerns chorology, the Mediterranean element is largely prevailing (68.14%), mainly represented by circum-Medit. (29.1%) and Euro-Medit. (23.07%). Endemics are 14.87% of the whole flora (141 taxa), with a large prevalence of Sardo-Corsican (39.01%) and Sardinian taxa (35.46%), i.e. 74.47% of the total. Due to the high number of taxa (9) of Gennargentu exclusive endemics and the geologic and geomorphologic peculiarities, it is here proposed a biogeographic classification for these territories serving to the identification of an auto nomous sector.

Introduction

The Mediterranean basin has been recognised as one of the 34 most important biodiversity hotspots, also because of its high number of endemic plant species (Mittermeier & al., 2004). This area not only constitutes a refuge for many relic species, but the relatively short distance of many islands and peninsulas promotes floristic exchanges and active plant speciation. Médail & Diadema (2009) identified the Central-Northern Sardinia as one of the 52 putative floristic refugia within the Mediterranean, i.e. places facilitating the long-term persistence of a species (one or more glacial-interglacial cycles) or of one or more of its meta-populations in a well-defined geographical area (e.g. mountain range, gorge).

Sardinia, with its 24,090 km2, is the second-largest island in the Mediterranean Sea. The prolonged isolation and high geological diversity created a wide range of habitats rich in endemic species, particularly on its mountain massifs, where the insularity is strengthened by the altitude and diversity of terrains (Médail & Quézel, 1997). The Sardinian flora consists of 2408 taxa including 2295 species (Conti & al., 2005) 168 of which are exclusive endemics (Bacchetta & al., 2012b).

According to the biogeographic classification of the Mediterranean region proposed by Rivas-Martínez & al. (2002), the Italo-Tyrrhenian province is composed by three subprovinces: the Sardinian, the Corsican and the Tuscano-Calabrian. Owing to the many similarities, not only in the floristic aspects, it is here preferred to recognize the rank of biogeographical province to Corsica and Sardinia, in the frame of an Italo-Tyrrhenian superprovince extended to all over the western coast of the Italian Peninsula, from Tuscany to Calabria, as formerly proposed by Ladero Alvarez & al. (1987). The Sardo-Corsican province, on the contrary, can be furtherly divided into a Sardinian and a Corsican subprovince, as stated by Bacchetta & Pontecorvo (2005). These authors, basing on their studies on the vascular endemic flora of Sulcis-Iglesiente, conferred the rank of biogeographic sector to these territories. Furthermore, a Sinisico subsector (included in the Campidano Sector) has been identified by Fenu & Bacchetta (2008) for the Sinis Peninsula (Central-Western Sardinia), while Fenu & al. (2010) proposed a new biogeographic sector for the Supramontes region (Central-Eastern Sardinia). Other parts of the island, including Gennargentu massif, still remain poorly investigated from a biogeographic viewpoint.

Gennargentu is the main mountain complex of Sardinia and since the beginning of the 18th century it became a popular destination for botanical investigations (Moris, 1827, 1837–1859; Barbey, 1885; Martelli, 1896–1904; Herzog, 1909; Schmid, 1933; Desole, 1948, 1966; Arrigoni, 1966, 1986; Brullo & al., 2001), that led to the description of several new taxa (PIGNATTI & FEOLI, 1974; Pignatti & Pignatti, 1974; Arrigoni & al., 1977–1991; Pignatti & al., 1980; Bacchetta & Brullo, 2006; Bacchetta & al., 2000, 2006, 2010) and to the analysis of the conservation status of some threatened taxa (Fenu & al., 2011, 2012). In spite of the relevant information provided by the abundant literature, an organic review on the vascular flora of Gennargentu was still missing, as well as floristic checklists for the whole massif or single parts of it. Furthermore, relatively big portions of this territory were little known or even unexplored. For these reasons, up to now, a detailed biogeographic framework has never been proposed for the concerned area.

Aims of this work were a comprehensive checklist of the vascular flora of Gennargentu and the analysis of its endemic component, in order to set the area in the Sardinian biogeographic subprovince.

Study Area

Gennargentu (Fig. 1) is located in the central-eastern part of Sardinia and borders the “Barbagia di Ollolai” to the North, the “Mandrolisai” to the North-West and West, the “Sarcidano” and “Barbagia di Belvì” to the South, the “Ogliastra” to the East, the “Supramontes of Urzulei and Orgosolo” to the North-East. The study area has a surface of 50,000 ha and consists of a system of summits and windy ridges at 1400–1500 m, with four culminations at more than 1800 m: Punta La Marmora (1834 m), Bruncu Spina (1828 m), Su Sciusciu (1823 m) and Punta Florisa (1822 m). Other important landmarks are Punta Paolinu (1792 m), Monte Spada (1596 m) and Mont'Arbu (1568 m). The heights of Tonneri de Sa Irgini and Arcu Correboi have also been included in the study area (Fig. 1).

Metamorphic rocks are by far the most represented outcrops. They include Carboniferous metasiltstones and metasand stones, regularly superimposed to schists, limestones and dating, respectively, to Devonian-Silurian and Ordovician (Carmignani & al., 2001). As by-products of the late Hercinic orogeny, intrusions of granites and porphyrites are also frequent (Carmignani & al., 2001). In the area of Arcu Correboi, thick Ordovician quartzitic and foliated silicates are interstratified, with Devonian-Silurian black schists and limestones. The study area covers the whole layered structure that identifies the Gennargentu lithostratigraphic unit (Carmignani & al., 2001).

According to the Rivas-Martínez's bioclimatic classification, most of the Gennargentu massif has a temperate-submediterranean climate, with thermotypes ranging from the lower supratemperate to the lower orotemperate, and ombrotypes from the upper subhumid to the upper humid. The Mediterranean climate is only found on the eastern and southern slopes of the massif, with a lower supramediterranean thermotype and ombrotype ranging from the upper subhumid to the lower humid (Bacchetta & al., 2009a).

Fig. 1.

Study area in Sardinia.

f01_209.jpg

Methods

Years of floristic researches have been carried out between 2004 and 2011; field trips were effectuated from February to November. Specimens and seeds collected in the field are stored in CAG and in the Sardinian Germplasm Bank (BGSAR), respectively. Bibliographic and herbariological researches have been fulfilled in BOLO, CAG, CAT, FI, NAP, PAL, RO, SASSA, SS, TO, W, Z.

Collected specimens have been identified using Pignatti (1982), Tutin & al. (1964–80; 1993), Arrigoni & al. (1977–1991), Jeanmonod & Gamisans (2007), Bolòs & Vigo (1984–2001) and Castroviejo & al. (1986–2011).

The delimitation of the plant families listed in our checklist followed the APG III proposal (APG III, 2009; Chase & Reveal, 2009; Peruzzi, 2010). Taxonomic nomenclature followed mainly Conti & al. (2005, 2007) and Greuter & al. (1984–2008), Jalas & Suominen (1972–1994), Jalas & al. (1996–1999) and Kurtto & al. (2004).

Growth and life forms have been determined in the field, following the classification of Raunkiaer (1934), and expressed with the abbreviations proposed by Pignatti (1982).

In addition to the consulted floras, chorotypes refer to the classification proposed by Brullo & al. (1996). For the chorological classification of the endemics, the nomenclature proposed by Arrigoni & Tommaso (1991) and modified by Bacchetta & Pontecorvo (2005) is followed.

For the non-native species, the place of origin is reported, as well as the abbreviations on the “status” proposed by Richardson & al. (2000) and modified by Pyšek & al. (2004): “Cas = casual”, “Nat = naturalized”, “Inv = invasive”.

Taxa known from literature but not found during our field investigations have not been considered in the floristic analysis.

For the biogeographic analysis of the investigated area, the methodological framework proposed by Rivas-Martínez (2007) has been followed. The same has been recently applied for several areas of Sardinia by Bacchetta & Pontecorvo (2005), Fenu & Bacchetta (2008), Angius & Bacchetta (2009), Bacchetta & al. (2009a) and Fenu & al. (2010).

Results

The vascular flora of Gennargentu consists of 948 taxa, of which 686 are species, 249 subspecies, 10 varieties and 3 hybrids, belonging to 97 families and 427 genera. Among the Angiosperms, dicots (incl. Laurales and Piperales) prevail, with 707 taxa (74.58% of the whole flora); monocots count for 199 taxa (20.99%). Pteridophytes and Gymnosperms include 28 (2.95%) and 14 (1.48%) taxa, respectively.

The most represented families are Asteraceae (118 taxa), followed by Poaceae (99) and Fabaceae (79); significant are also Caryophyllaceae (55), Lamiaceae (34), Rosaceae (31), Apiaceae (30), Brassicaceae (28) and Orchidaceae (26).

The richest genera are Trifolium L. (22 taxa), Ranunculus L. (18), Sedum L., Vicia L. and Carex L. (13), Poa L. (12), Silene L. (11), Euphorbia L., Galium L., Orchis L. and Rumex L. (10), Allium L., Filago L., Quercus L., Juncus L. and Orobanche L. (8), Geranium L., Epilobium L., Veronica L., Vulpia C. C. Gmel., Cerastium L., Hieracium L. and Medicago L. (7).

The following taxa are new records for the Sardinian and the Italian flora: Anarrhinum corsicum Jord. & Fourr., Hypericum corsicum Steud. and Sagina procumbens subsp. muscosa (Jord.) Nyman; the following ones are new for the flora of the Island: Asplenium adiantum-nigrum L. subsp. adiantumnigrum, A. trichomanes subsp. pachyrachis (Christ) Lovis & Reichst., Carex depauperata Curtis &With., C. flava L., Rubus caesius L., Rumex aquaticus L., Senecio erucifolius L., and Tragopogon dubius Scop.

Life form analysis (Fig. 2) highlighted a clear prevalence of hemicryptophytes (35.65%), followed by therophytes (34.6%), geophytes (12.13%) and (nano-)phanerophytes (11.6%).

As concerns chorology (Fig. 3), the flora of Gennargentu is mostly constituted by Mediterranean taxa (68.14%); the only other significant chorotype is the palaeotemperate (9.07%), the rest ranging between 0.21 and 7.28%. In the Mediterranean quota, the circum-Mediterranean elements prevail (188 taxa, 29.1%), followed by the Euro-Medit. (149 taxa, 23.07%) and the endemic (141 taxa, 21.83%). The West-Medit. (56 taxa, 8.67%), together with the Medit.-Atlantic (29 taxa, 4.49%) count for 13.16% of the whole flora.

Fig. 2.

Life forms percentages, referred to the whole flora. H = hemicryptophytes ; C = chamaephytes; G = geophytes; NP = nanophanerophytes; P = phanerophytes; T = therophytes ; Hy = hydrophytes.

f02_209.jpg

Table 1.

List of endemic taxa.

t01a_209.gif

Cont.

t01b_209.gif

Cont.

t01c_209.gif

Fig. 3.

Percentages of the chorologic units, referred to the whole flora.

f03_209.jpg

Fig. 4.

Life forms percentages of the endemic flora of Gennargentu. H = hemicryptophytes ; C = chamaephytes ; G = geophytes ; NP = nanophanerophytes ; P = phanerophytes; T = therophytes.

f04_209.jpg

Fig. 5.

Percentages of the chorologic units of the endemic flora of Gennargentu. EMOI = W-Mediterranean insular endemics ; ETI = Tyrrhenian insular endemics ; ET = Tyrrhenian endemics ; ETI-NA = Tyrrhenian insular and N-Africa endemics ; ESS = Sardinia and Sicily endemics ; ESC = Sardo-Corsican endemics ; ESA = Sardinian endemics.

f05_209.jpg

In our census, only 38 non-native taxa have been found, i.e. 4.01% of the whole flora: 1 of them is considered invasive (Xanthium spinosum L.), 19 casual and 18 naturalized.

The endemic component (Table 1) includes 141 taxa: 84 species, 51 subspecies and 6 varieties, belonging to 46 families and 108 genera. The most represented families are Asteraceae (18 taxa), Caryophyllaceae (11), Lamiaceae (10) Ranunculaceae, Plantaginaceae and Fabaceae (6). The genera richest in endemic taxa are: Genista L. and Euphorbia L. (4), Armeria Willd., Dianthus L., Hieracium L., Hypericum L., Potentilla L. (3), followed by 17 genera with 2 taxa each, such as for example Aquilegia L., Ranunculus L., Saxifraga L., Carex L. and Scrophularia L.

Nearly the half of the endemics (Fig. 4) are hemicryptophytes (46.1%), the rest are chamaephytes (19.15%), geophytes (17.02 %) and (nano-)phanerophytes (11.35 %).

The Sardo-Corsican elements (Fig. 5) prevail (39.01%), followed by the Sardinian ones (35.46%) and by the Italo-Tyrrhenian (18.44%). The last group includes taxa in common with the Tuscan Archipelago (7.8%) and some others ranging up to limited portions of the western coast of the Italian peninsula and Sicily (10.64%).

Discussion

In the area of Gennargentu, corresponding roughly to 1% of Sardinia, more than 30% of the regional flora is occurring. Although the available floristic data do not allow to estimate species-area relationships, this high number of taxa, combined with more general considerations on the uniqueness of Gennargentu in terms of largeness and altitude highlight the floristic importance of this area.

The floristic richness of Gennargentu can be explained hypothesizing that along the Quaternary age, the less drastic climate changes on large Mediterranean islands favoured the local persistence of high plant richness and the co-existence of distinct genetic lineages (Valiente Banuet & al., 2006; Medail & Diadema, 2009), confirming the identification of this area as one of the Mediterranean putative refugia. The observed pattern in plant family distribution, which is only partially correlated with the pattern of endemic species, may testify that Gennargentu acted as a “climatic island” during the Quaternary climatic variations. Floristic changes were more severe and drastic in the lowlands and re-colonisation was particularly important for shaping the modern floras at lower altitudes. Not all taxa were able to recolonise and the empty niches were filled by new adaptive radiation of migrating taxa, with a strong tendency towards the annual life strategy (Guarino, 2006). The result is that families are generally larger, but with fewer endemic species in the lowlands than in the summit areas of Gennargentu, where the elevation facilitated the survival or, eventually, an independent adaptive radiation of locally surviving taxa. For example, a high potential for adaptive radiation of the Ranunculaceae may be seen in the fact that this family has a significant number of endemic species on Gennargentu, even if it does not account for the most representative families in that area, nor in the whole Sardinian flora. Likewise, the Asteraceae seem to have a strong potential for both migrations and local adaptive radiation, whereas the Poaceae are remarkable for a high migration potential but may have a low potential for local, independent adaptive radiation. Families like Fabaceae, Asteraceae and Euphorbiaceae were likely to be able to diversify on the Gennargentu summits not only in the Pleistocene, but also in the Post-Messinian phase.

The role of Gennargentu as a “climatic island” was also confirmed by the life form analysis where the ratio between hemicryptophytes and therophytes is much higher than in the rest of Sardinia (28.1% and 39.9% for H and T, respectively; Bocchieri, 1995). Even the number of nano-phanerophytes is well above the average value for Sardinia (8.8%; Bocchieri, 1995) The percentage of geophytes is also pretty high; this is probably linked to the pastoral land-use of the whole area, frequently affected by periodical fires as for the whole Island (12.1%; Bocchieri, 1995). Chamaephytes display values slightly under the average value for Sardinia (8.1%; Bocchieri, 1995) and the few hydrophytes testify the lack of backwater on Gennargentu.

In the chorologic analysis, the relatively high percentage of palaeotemperate elements outlines the temperate-submediterranean bioclimate in the summit areas of the massif, as well as on its northern slopes. The low percentage of nonnative taxa denotes the high naturalistic value of the inspected area and suggests that the mountain flora of Sardinia is probably less prone to competition by allochtonous taxa (Bacchetta & al., 2009b).

Sardinia is well known for its richness in endemic taxa, due to the isolation and high topographic diversity (Médail & Quézel, 1997). The Gennargentu massif, even if its elevation is not comparable with that of the Corsican mountains and has never been affected by glacial perturbation, hosts several distinctive ecological niches as highlighted in the case of Lamyropsis microcephala (Moris) Dittrich & Greuter by Mattana & al. (2009). The ecologic and bioclimatic isolation, added to the geographic insularity of Sardinia lets to identify the Gennargentu massif as one of the main “micro hotspot” of Sardinia sensu Fenu & al. (2010).

Moreover, like the Supramontes region (Fenu & al., 2010), Gennargentu represents a southern European “refugium” (sensu Tzedakis & al., 2002) for some temperate tree species (e.g. Acer monspessulanum L. subsp. monspessulanum, Ilex aquifolium L., Ostrya carpinifolia Scop., Quercus congesta C. Presl, Rhamnus alpina L. subsp. alpina, Sambucus nigra L., Sorbus aria (L.) Crantz subsp. aria, S. aucuparia subsp. praemorsa (Guss.) Nyman, S. torminalis Crantz, Taxus baccata L.). Therefore, it represents an area of special value for the long-term persistence of biodiversity (Taberlet & Cheddadi, 2002), as further testified by the occurrence of several relict endemic taxa, like Astragalus genargenteus Moris, Lamyropsis microcephala, Rhamnus persicifolia Moris, Ribes multiflorum subsp. sandalioticum Arrigoni, Ruta lamarmorae Bacch., Brullo & Giusso, Tanacetum audibertii (Req.) DC.

In particular, rocky habitats and windy summit areas, in spite of their limited extension, form a very important reservoir for the local biodiversity (Médail & Quézel, 1997). The high percentage of Sardinian endemics (35.46%) and, within these, of the taxa exclusively growing on Gennargentu (6.38%) testifies the floristic autonomy of the massif. The relatively high percentage of Sardo-Corsican endemics (39.01%), as well as of endemic taxa in common with the Tuscan Archipelago (7.8%) turns out to be so high because of the prevalence of siliceous rocks, that enhances the floristic affinity of Gennargentu with the Corsican and the Ilvensian territories (Bacchetta & Pontecorvo, 2005). On the other hand, in the Sardinian areas where limestones and carbonatic rocks in general prevail, and particularly in the so-called “carbonate-metalliferous ring” (i.e. S-W Sardinia), or in the Supramontes area (i.e. C-E Sardinia, just around Gennargentu), the number of Sardinian exclusive endemics tends to be higher than in Gennargentu (Bacchetta & Pontecorvo, 2005; Fenu & al., 2010).

The nine endemic taxa in common with the Balearic Islands, added to the 8.51% of West-Mediterranean elements, confirmed the biogeographical affiliation of Sardinia to the socalled “W-Mediterranean subregion” (Bacchetta & Pontecorvo, 2005). The 11 taxa in common with Corsica and the Tuscan Archipelago justify the biogeographical identity of an Italo-Tyrrhenian Superprovince, as proposed by Ladero Alvarez & al. (1987) and followed by Bacchetta & al. (2012a).

Due to the relatively high number of exclusive endemics of Gennargentu massif, and the geologic and geomorphologic peculiarities, it is here proposed a biogeographic classification for these territories with the identification of an autonomous sector named “Gennargentu”. According to Ríos Ruiz & al. (2003), the floristic autonomy of this sector is highlighted not only by the presence of nine exclusive taxa (Armeria sardoa subsp. genargentea Arrigoni, Centaurea magistrorum Arrigoni & Camarda, Cynoglossum barbaricinum Arrigoni & Selvi, Dianthus genargenteus Bacch., Brullo, Casti & Giusso, Genista pichisermolliana Vals., Lamyropsis microcephala, Orobanche denudata Moris, Sedum villosum subsp. glandulosum Moris, Ruta lamarmorae) but also by several differential taxa, with a wider distribution range and limited in Sardinia to the study area, such as Anarrhinum corsicum, Euphorbia hyberna subsp. insularis (Boiss.) Briq., Euphrasia nana Rouy, Herniaria litardierei (Gamisans) Greuter & Burdet, Hypericum corsicum, Gentiana lutea L. s.l., Myosotis soleirolii Godr., Noccaea brevistyla (DC.) Steud., Sorbus aucuparia subsp. praemorsa (Guss.) Nyman, Tanacetum audibertii, Trisetum gracile (Moris) Boiss. In addition, the Gennargentu massif shares with the surrounding sector of Supramontes some relictual endemic calcifugous taxa like Genista aetnensis (Biv.) DC., Morisia monanthos (Viv.) Asch., Cerastium palustre Moris, Astragalus genargenteus, Juniperus nana var. corsicana Lebreton, Mossa & Gallet and Carex microcarpa Moris (Fenu & al., 2010).

In conclusion, the overall floristic richness of Gennargentu massif, determined by its ecological insularity and the richness of its endemic flora, highlighted the peculiarity of this territory and its identification as one of the Mediterranean putative “refugia”, as stated by Medail & Diadema (2009), justifying the set up of an autonomous biogeographic sector.

References

1.

R. Angius & G. Bacchetta (2009). Boschi e boscaglie ripariali del Sulcis-Iglesiente (Sardegna Sud-Occidentale). Braun-Blanquetia 45. Google Scholar

2.

APG III (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161: 105–121. Google Scholar

3.

P. V. Arrigoni (1966). Il Governo dell'istituendo Parco Nazionale del Gennargentu, in Sardegna, in rapporto ai caratteri geobotanici del territorio. Arch. Bot. Biogeogr. Ital. 42: 218–233. Google Scholar

4.

P. V. Arrigoni (1986). Contributo alla conoscenza della vegetazione del Monte Gennargentu, in Sardegna. Boll. Soc. Sarda Sci. Nat. 25: 63–96. Google Scholar

5.

P. V. Arrigoni , I. Camarda , B. Corrias , S. Diana Corrias , E. Nardi , M. Raffaelli & F. Valsecchi (1977–1991). Le piante endemiche della Sardegna. 1–202. Boll. Soc. Sarda Sci. Nat. 16–28. Google Scholar

6.

P. V. Arrigoni & P. L. Di Tommaso (1991). La vegetazione delle montagne calcaree della Sardegna centro-orientale. Boll. Soc. Sarda Sci. Nat. 28: 201–310. Google Scholar

7.

G. Bacchetta , S. Bagella , E. Biondi , E. Farris , R. Filigheddu & L. Mossa (2009a). Vegetazione forestale e serie di vegetazione della Sardegna (con rappresentazione cartografica alla scala 1:350.000). Fitosociologia 46(1). Google Scholar

8.

G. Bacchetta & S. Brullo (2006). Taxonomic revision of Astragalus genargenteus Moris species complex (Fabaceae). Willdenowia 36: 157–167. Google Scholar

9.

G. Bacchetta , S. Brullo , M. Casti & G. P. Giusso Del Galdo (2010). Taxonomic revision of the Dianthus sylvestris group (Caryophyllaceae) in central-southern Italy, Sicily and Sardinia. Nordic J. Bot. 28: 137–173. Google Scholar

10.

G. Bacchetta , S. Brullo & G. Giusso Del Galdo (2006). Ruta lamarmorae a new species from Sardinia. Edinburgh J. Bot. 63: 153–160. Google Scholar

11.

G. Bacchetta , S. Brullo & F. Selvi (2000). Echium anchusoides (Boraginaceae), a new species from Sardinia (Italy). Nordic J. Bot. 20: 271–278. Google Scholar

12.

G. Bacchetta , E. Farris & C. Pontecorvo (2012a). A new method to set conservation priorities in biodiversity hotspots. Pl. Biosyst. 146: 638–648. Google Scholar

13.

G. Bacchetta , G. Fenu & E. Mattana (2012b). A checklist of the exclusive vascular flora of Sardinia with priority rankings for conservation. Anales Jard. Bot. Madrid 69: 81–89. Google Scholar

14.

G. Bacchetta , O. Mayoral García-Berlanga & L. Podda (2009b). Catálogo de la flora exótica de Cerdeña (Italia). Fl. Montiber. 41: 35–61. Google Scholar

15.

G. Bacchetta & C. Pontecorvo (2005). Contribution to the knowledge of the endemic vascular flora of Iglesiente (SW Sardinia-Italy). Candollea 60: 481–501. Google Scholar

16.

W. Barbey (1885). Flora Sardoae compendium. Lausanne. Google Scholar

17.

E. Bocchieri (1995). La connaisance et l'état de conservation de la flore en Sardaigne. Ecol. Medit. 21: 71–81. Google Scholar

18.

O. Bolòs & J. Vigo (1984–2001). Fl. Països Catalans 1–4. Editorial Barcino. Google Scholar

19.

S. Brullo , G. Giusso Del Galdo & R. Guarino (2001). The orophilous communities of the Pino-Juniperetea class in the Central and Eastern Mediterranean area. Feddes Repert. 112: 261–308. Google Scholar

20.

S. Brullo , M. Grillo & A. Guglielmo (1996). Considerazioni fitogeografiche sulla flora iblea. Boll. Acc. Gioenia Sci. Nat. 29(352): 45–111. Google Scholar

21.

L. Carmignani , G. Oggiano , S. Barca , P. Conti , A. Eltrudis , A. Funedda & S. Pasci (2001). Note illustrative della Carta Geologica della Sardegna in scala 1:200.000. — Memorie descrittive della Carta Geologica d'Italia. Istituto Poligrafico e Zecca dello Stato, Roma. Google Scholar

22.

S. Castroviejo (ed.) (1986–2011). Fl. Iber. Real Jardín Botánico, C.S.I.C., Madrid. Google Scholar

23.

M.W. Chase & J. L. Reveal (2009) A phylogenetic classification of the land plants to accompany APG III. Bot. J. Linn. Soc. 161: 122–127. Google Scholar

24.

F. Conti , G. Abbate , A. Alessandrini & C. Blasi (ed.) (2005). An annotated checklist of the Italian Vascular Flora. Palombi Editori, Roma. Google Scholar

25.

F. Conti , A. Alessandrini , G. Bacchetta , E. Banfi , G. Barberis , F. Bartolucci , L. Bernardo , S. Bonacquisti , D. Bouvet , M. Bovio , G. Brusa , E. Del Guacchio , B. Foggi , S. Frattini , G. Galasso , L. Gallo , C. Gangale , G. Gottschlich , P. Grü-Nanger , L. Gubellini , G. Iiriti , D. Lucarini , D. Marchetti , B. Moraldo , L. Peruzzi , L. Poldini , F. Prosser , M. Raffaelli , A. Santangelo , E. Scassellati , S. Scortegagna , F. Selvi , A. Soldano , D. Tinti , D. Ubaldi , D. Uzunov & M. Vidali (2007). Integrazioni alla checklist della flora vascolare italiana. Nat. Vicentina 10: 5–74. Google Scholar

26.

L. Desole (1948). Distribuzione geografica dell'Ilex aquifolium L. e del Taxus baccata L. in Sardegna. Prima Nota. Atti Soc. Tosc. Sci. Nat. Pisa, Mem. 55: 3–38. Google Scholar

27.

L. Desole (1966). Distribuzione geografica dell'Ilex aquifolium L. e del Taxus baccata L. in Sardegna (Seconda e ultima nota.). Boll. Ist. Bot. Reale Univ. Sassari 7: 5–67. Google Scholar

28.

G. Fenu & G. Bacchetta (2008). La flora vascolare della penisola del Sinis (Sardegna occidentale). Acta Bot. Malac. 33: 91–124. Google Scholar

29.

G. Fenu , E. Mattana & G. Bacchetta (2011). Distribution, status and conservation of a Critically Endangered, extremely narrow endemic: Lamyropsis microcephala (Asteraceae) in Sardinia. Oryx 42: 180–186. Google Scholar

30.

G. Fenu , E. Mattana & G. Bacchetta (2012). Conservation of endemic insular plants: the genus Ribes L. (Grossulariaceae) in Sardinia. Oryx 46: 219–222. Google Scholar

31.

G. Fenu , E. Mattana , A. Congiu & G. Bacchetta (2010). The endemic vascular flora of Supramontes: a priority plant conservation area in Sardinia. Candollea 65: 347–358. Google Scholar

32.

W. Greuter , H. M. Burdet & G. Long (ed.) (1984–2008). Med-Checklist 1, 2, 4. Conservatoire & Jardin botaniques de Genève, Genève. Google Scholar

33.

R. Guarino (2006). On the origin and evolution of the Mediterranean dry grasslands. Ber. Reinhold-Tüxen Ges. 18: 195–206. Google Scholar

34.

T. Herzog (1909). Über die Vegetationsverhältnisse Sardiniens. Bot. Jahrb. Syst. 42: 341–436. Google Scholar

35.

J. Jalas & J. Suominen (ed.) (1972–1994). Atlas Fl. Eur. 1–10. Helsinki University Printing House. Google Scholar

36.

J. Jalas , J. Suominen & R. Lampinen (ed.) (1996–1999). Atlas Fl. Eur. 11–12. Helsinki University Printing House. Google Scholar

37.

D. Jeanmonod & J. Gamisans (2007). Fl. Corsica. Edisud. Google Scholar

38.

A. Kurtto , R. Lampinen & L. Junikka (ed.) (2004). Atlas Fl. Eur. 13. Helsinki University Printing House, Helsinki. Google Scholar

39.

M. Ladero Alvarez , T. E. Díaz González , A. Penas Merino , S. Rivas-Martínez & C. Valle Gutiérrez (1987). Datos sobre la vegetación de las Cordillera Central y Cantábrica. Itin. Geobot. 1. Google Scholar

40.

U. Martelli (1896–1904). Monocotyledones Sardoae sive ad floram sardoam Josepho Hyacinthi Moris per Ugolino Martelli continuatio. Vol. 1–3. Firenze. Google Scholar

41.

E. Mattana , M. I. Daws & G. Bacchetta (2009). Seed dormancy and germination ecology of Lamyropsis microcephala: a mountain endemic species of Sardinia (Italy). Seed Sci. Technol. 37: 491–497. Google Scholar

42.

F. Médail & K. Diadema (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36: 1333–1345. Google Scholar

43.

F. Médail & P. Quézel ( 1997). Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann. Missouri Bot. Gard. 84: 112–127. Google Scholar

44.

G. G. Moris (1827). Stirpium sardoarum Elenchus. Carali. Google Scholar

45.

G. Moris (1837–1859). Flora Sardoa seu Historia Plantarum in Sardinia et adiacentibus insulis. Vol. 1–3. Taurini. Google Scholar

46.

R. A. Mittermeier , P. Robles Gil , M. Hoffmann , J. Pilgrim , T. Brooks , C. G. Mittermeier , J. Lamoreux & G. A. B. Da Fonseca ( 2004). Hotspots Revisited. CEMEX, Mexico. Google Scholar

47.

L. Peruzzi ( 2010). Checklist dei generi e delle famiglie della flora vascolare Italiana. Inform. Bot. Ital. 42: 151–170. Google Scholar

48.

S. Pignatti ( 1982). Fl. Ital. 1–3. Edagricole, Bologna. Google Scholar

49.

E. Pignatti & E. Feoli ( 1974). Euphrasia minima var. genargentea, nuova per la flora sarda. Boll. Soc. Sarda Sci. Nat. 14: 31–35. Google Scholar

50.

E. Pignatti & S. Pignatti ( 1974). Osservazioni fitosociologiche sulla vegetazione rupestre delle montagne silicee della Sardegna. Boll. Soc. Sarda Sci. Nat. 14: 19–30. Google Scholar

51.

E. Pignatti , S. Pignatti , S. Nimis & A. Avanzini ( 1980). La vegetazione ad arbusti spinosi emisferici: Contributo alla interpretazione delle fasce di vegetazione delle alte montagne dell'Italia mediterranea. Collana del programma finalizzato Promozione della qualità dell'ambiente, C. N. R., Roma. Google Scholar

52.

P. Pyšek , D. M. Richardson , M. Rejmánek , G. L. Webster , M. Williamson & J. Kirschner ( 2004). Alien plants in checklist and floras: towards better communication between taxonomist and ecologists. Taxon 53: 131–143. Google Scholar

53.

C. Raunkiaer (1934). The life forms of plants and statistical plant geography. The Clarendon Press. Google Scholar

54.

D. M. Richardson , P. Pyšek , M. Rejmánek , M. G. Barbour , F. D. Panetta & C. J. West ( 2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity & Distrib. 6: 93–107. Google Scholar

55.

S. Ríos Ruiz , F. Alcazar Ariza & A. Valdés Franzi (2003). Vegetación de sotos y riberas de la Provincia de Albacete (España). Istituto de Estudios Albacetenses “Don Juan Manuel” De la Excma. Deputación de Albacete. Serie 1 - Estudios - Núm. 148, Albacete. Google Scholar

56.

S. Rivas-Martínez (ed.) (2007). Mapa de series, geoseries y geopermaseries de vegetazión de España. Itin. Geobot. 17: 5–436. Google Scholar

57.

S. Rivas-Martínez , T. E. Díaz , F. Fernández-Gonzales , J. Izco , J. Loidi , M. Lousã & Á. Penas ( 2002). Vascular plant communities of Spain and Portugal. Itin. Geobot. 15: 5–432. Google Scholar

58.

E. Schmid ( 1933). Beitrage zur Flora der Insel Sardinien. Mitt. Bot. Mus. Univ. Zürich 146: 232–255. Google Scholar

59.

P. Taberlet & R. Cheddadi ( 2002). Quaternary refugia and persistence of biodiversity. Science 297: 2009–2010. Google Scholar

60.

T. G. Tutin , N. A. Burges , A. O. Chater , G. R. Edmondson , W. H. Heywood , D. M. Moore , D. H. Valentine , S. M. Walters & D. A. Webb (ed.) (1993). Fl. Eur. 1. Second edition. Cambridge University Press. Google Scholar

61.

T. G. Tutin , N. A. Burges , D. H. Valentine , S. M. Walters & D. A. Webb (ed.) (1964–80). Fl. Eur. 1–5. Cambridge University Press. Google Scholar

62.

P. C. Tzedakis , I. T. Lawson , M. R. Frogley , G. M. Hewitt & R. C. Preece ( 2002). Buffered tree population changes in a Quaternary refugium: evolutionary implications. Science 297: 2044. Google Scholar

63.

A. Valiente Banuet , A. Vital Rumebe , M. Verdu & R. M. Callaway ( 2006). Modern quaternary plant lineages promote diversity through facilitation of ancient Tertiary linages. Proc. Natl. Acad. Sci. U.S.A. 103: 812–817. Google Scholar
CONSERVATOIRE ET JARDIN BOTANIQUES DE GENÈVE 2013
Gianluigi Bacchetta, Giuseppe Fenu, Riccardo Guarino, Giovanni Mandis, Efisio Mattana, Giovanni Nieddu, and Carmine Scudu "Floristic Traits and Biogeographic Characterization of the Gennargentu Massif (Sardinia)," Candollea 68(2), 209-220, (1 December 2013). https://doi.org/10.15553/c2012v682a4
Received: 10 July 2012; Accepted: 18 July 2013; Published: 1 December 2013
KEYWORDS
biogeography
Endemics
floristics
Gennargentu
Mediterranean vascular flora
Sardinia
Back to Top