Atmospheric and soil nitrogen levels are increasing across the world. Nitrogen addition can alter vegetative and flower traits, including flowering phenology, floral production, and flower morphology, and the quantity and quality of floral rewards such as nectar. However, it is not well understood if and how these changes in floral traits will affect foraging preferences and pollination by different pollinator species. We hypothesized that honey bees (Apis mellifera) would exhibit a preference for plants with increased numbers of flowers, while bumble bees (Bombus spp.) would exhibit a preference for plants with increased nectar production as a result of soil nitrogen addition. A 2-yr field experiment was conducted to investigate the effects of varying nitrogen supply levels (e.g., 0, 4, 8 kg N ha–1 yr–1 of N0, N4, and N8) on the vegetative and floral traits of a perennial plant (Saussurea nigrescens), as well as the visitation rates of introduced managed honey bees (A. mellifera) and the native wild bumble bees. The results showed that adding nitrogen increased the number of flowers and nectar production. However, honey bees and bumble bees were responding to different floral resources that induced by nitrogen addition, with honey bees prioritizing the number of flowers and bumble bees prioritizing nectar quantity. The findings shed new light on how plants and pollinators interact when nitrogen is added, as well as how pollinator communities will be affected in the future.
How to translate text using browser tools
21 September 2024
Honey bees and bumble bees react differently to nitrogen-induced increases in floral resources
Junpeng Mu,
Peiyue Che,
Dawei Li,
Juanli Chen,
Chuan Zhao,
Christina M. Grozinger
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Environmental Entomology
Vol. 53 • No. 6
December 2024
Vol. 53 • No. 6
December 2024
alpine meadow
Apis mellifera
bumble bee
nitrogen addition
plant–pollinator interaction