Uncovering the evolutionary history of the subfamilies Ectatomminae and Heteroponerinae, or ectaheteromorphs, is key to understanding a major branch of the ant tree of life. Despite their diversity and ecological importance, phylogenetic relationships in the group have not been well explored. One particularly suitable tool for resolving phylogeny is the use of ultraconserved elements (UCEs), which have been shown to be ideal markers at a variety of evolutionary time scales. In the present study, we enriched and sequenced 2,127 UCEs from 135 specimens of ectaheteromorph ants and investigated phylogeny using a variety of model-based phylogenomic methods.Trees recovered from partitioned maximum-likelihood and species-tree analyses were well resolved and largely congruent.The results are consistent with an expanded concept of Ectatomminae that now includes the subfamily Heteroponerinae new synonym and its single tribe Heteroponerini new combination. Eleven monophyletic groups are recognized as genera: Acanthoponera, Alfaria status revived, Boltonia Camacho and Feitosa new genus, Ectatomma, Gnamptogenys, Heteroponera, Holcoponera status revived, Poneracantha status revived, Rhytidoponera, Stictoponera status revived, and Typhlomyrmex.The new phylogenetic framework and classification proposed here will shed light on the study of Ectatomminae taxonomy and systematics, as well as on the morphological evolution of the groups that it comprises.