BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
21 January 2022 Miscanthus × giganteus growth and control in simulated upland and wetland habitats
Gray Turnage, John D. Byrd, John D. Madsen
Author Affiliations +
Abstract

Globally, giant miscanthus (Miscanthus × giganteus J.M. Greef & Deuter ex Hodkinson & Renvoize [sacchariflorus × sinensis]) is used as a biofuel crop due to its ability to persist in a wide range of climates. However, little work has assessed this plant's ability to invade and persist in wetland habitats. In outdoor mesocosms, we examined M. × giganteus's ability to grow in simulated wetland versus upland habitats and examined chemical control strategies for both habitats using aquatic-labeled herbicides. Miscanthus × giganteus growth was consistently greater in simulated wetland habitats, with wetland plants 2.4 to 3 times taller than upland plants at 6 wk after treatment (WAT) and 2.8 to 3.3 times taller than upland plants at 12 WAT. Miscanthus × giganteus aboveground biomass was 12.7 to 17.7 times greater in wetland-versus upland-grown plants at 6 WAT and 9.6 to 12.5 times greater at 12 WAT. Belowground biomass was 4.5 to 10.7 times greater in wetland versus upland grown plants at 6 WAT and 4.0 to 6.1 times greater at 12 WAT. Miscanthus × giganteus belowground biomass was always greater than aboveground in both habitats at 6 (6.0 times greater in wetlands and 2.9 times greater in uplands) and 12 WAT (3.8 times greater in wetlands and 1.3 times greater in uplands). Generally, all herbicide treatments reduced M. × giganteus height (66% to 100% reduction) and biomass (84% to 100%) compared with nontreated plants at 12 WAT; however, glyphosate (5,716.3 g ai ha–1) and imazapyr (1,120.8 g ai ha–1) performed better than imazamox (560.4 g ai ha–1) and penoxsulam (98.6 g ai ha–1). This is the first work to provide evidence that M. × giganteus can be chemically controlled in wetland habitats. Furthermore, this is the first work to show that penoxsulam (an acetolactate synthase–inhibiting herbicide) can reduce M. × giganteus growth in upland or wetland habitats.

© The Author(s), 2022. Published by Cambridge University Press on behalf of the Weed Science Society of America.
Gray Turnage, John D. Byrd, and John D. Madsen "Miscanthus × giganteus growth and control in simulated upland and wetland habitats," Invasive Plant Science and Management 15(1), 25-32, (21 January 2022). https://doi.org/10.1017/inp.2022.1
Received: 13 August 2021; Accepted: 29 December 2021; Published: 21 January 2022
KEYWORDS
chemical control
giant miscanthus
simulated habitat
wetland growth
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top