NcMIC1 is a 460 amino acid Neospora caninum microneme protein implicated in host cell adhesion and invasion processes. In this study, we assessed the potential protectivity of NcMIC1-based vaccination against experimental N. caninum infection in mice, employing both recombinant antigen vaccines and DNA vaccines. Recombinant NcMIC1 (recNcMIC1) was expressed in Escherichia coli as gluthatione-S-transferase-fusion protein. The corresponding NcMIC1 cDNA was cloned into the pcDNA3.1 expression plasmid (pcDNA-MIC1), and expression was checked in transfected Vero cells. Mice (10 animals/group) were vaccinated either with recNcMIC1 antigen suspended in Ribi-adjuvant (3 intraperitoneal injections), pcDNA-NcMIC1 (3 intramuscular injections), or pcDNA-NcMIC1 (twice intramuscularly), followed by 1 intraperitoneal recNcMIC1 antigen boost. Control groups included corresponding treatments with adjuvant, pcDNA3.1 without insert, and PBS (= infection control). All vaccinated and control groups were then challenged intraperitoneally with 2 × 106 N. caninum tachyzoites. Animals were inspected daily for a period of 3 wk postinfection (PI). At day 21, all animals were killed and assessed for infection. Before day 21 PI, clinical signs such as walking disorders, rounded back, apathy, and paralysis occurred in infection controls (50% of the mice), pcDNA and adjuvant controls (20% each), and the combined pcDNA-NcMIC1/recNcMIC1-treated group (30%). No clinical symptoms were observed in the recNcMIC1 and pcDNA-NcMIC1 vaccinated groups. All mice were positive for cerebral N. caninum infection as assessed by PCR of brain tissue. However, quantitative real-time PCR revealed that the infection intensity was significantly reduced in the group vaccinated with recNcMIC1 antigen. Immunohistochemistry confirmed these findings. In contrast, the infection intensity was highest in the group vaccinated with the pcDNA-NcMIC1/recNcMIC1 combination, indicating that the sequential application of the DNA vaccine and recombinant antigen had a deleterious effect. Serological analysis showed that only recNcMIC1-immunized animals generated detectable antibody levels recognizing native NcMIC1. Thus, of all protocols applied here, only recNcMIC1 vaccination appears to be suited to reduce cerebral infection in mice challenged with N. caninum tachyzoites.