The effects of drought on stream invertebrates have been reviewed, but the effects of artificially reduced flows have not. We addressed this knowledge gap by reviewing the literature on the effects of natural low flows and artificially reduced flows (without complete cessation of flow). We considered the effects of low water volume on habitat conditions and on invertebrate community structure, behavior, and biotic interactions. Decreases in discharge usually cause decreased water velocity, water depth, and wetted channel width; increased sedimentation; and changes in thermal regime and water chemistry. Invertebrate abundance increases or decreases in response to decreased flow, whereas invertebrate richness commonly decreases because habitat diversity decreases. Invertebrates differ in their environmental tolerances and requirements, and any loss of habitat area or alteration of food resources from decreased flow can influence organism behavior and biotic interactions. Invertebrate drift often increases immediately after flow reduction, although some taxa are more responsive to changes in flow than others. Natural low flows and artificially reduced flows have similar effects on invertebrates, but the severity (duration and magnitude) of the flow decrease can influence invertebrate responses. Certain invertebrate taxa are especially sensitive to flow decreases and might be useful indicators for reduced flows or flow restoration. The effect of low flow on streams is an important issue, but few empirical studies of the impacts of decreased flow on stream ecosystems have been done, and more manipulative experiments are needed to understand the ecological consequences of decreased flow.