Proterozoic strata host evidence of global “Snowball Earth” glaciations, large perturbations to the carbon cycle, proposed changes in the redox state of oceans, the diversification of microscopic eukaryotes, and the rise of metazoans. Over the past half century, the number of fossils described from Proterozoic rocks has increased exponentially. These discoveries have occurred alongside an increased understanding of the Proterozoic Earth system and the geological context of fossil occurrences, including improved age constraints. However, the evaluation of relationships between Proterozoic environmental change and fossil diversity has been hampered by several factors, particularly lithological and taphonomic biases. Here we compile and analyze the current record of eukaryotic fossils in Proterozoic strata to assess the effect of biases and better constrain diversity through time. Our results show that mean within assemblage diversity increases through the Proterozoic Eon due to an increase in high diversity assemblages, and that this trend is robust to various external factors including lithology and paleogeographic location. In addition, assemblage composition changes dramatically through time. Most notably, robust recalcitrant taxa appear in the early Neoproterozoic Era, only to disappear by the beginning of the Ediacaran Period. Within assemblage diversity is significantly lower in the Cryogenian Period than in the preceding and following intervals, but the short duration of the nonglacial interlude and unusual depositional conditions may present additional biases. In general, large scale patterns of diversity are robust while smaller scale patterns are difficult to discern through the lens of lithological, taphonomic, and geographic variability.