How to translate text using browser tools
23 December 2014 NEMO Modulates Radiation-Induced Endothelial Senescence of Human Umbilical Veins Through NF-κB Signal Pathway
Xiaorong Dong, Fan Tong, Cai Qian, Ruiguang Zhang, Jihua Dong, Gang Wu, Yu Hu
Author Affiliations +
Abstract

Recently several laboratories have reported that radiation induces senescence in endothelial cells. Senescent cells can secrete multiple growth-regulatory proteins, some of which affect tumor growth, survival, invasion or angiogenesis. The purpose of this study was to explore the mechanisms of radiation-induced senescence and its effects on angiogenesis in human umbilical vein endothelial cells (HUVECs). HUVECs were either pretreated with or without PS1145 prior to irradiation with 0–8 Gy. PS1145 is a novel, highly specific small-molecule inhibitor of nuclear factor kappa B essential modulator (NEMO). MTT assays showed that in HUVECs untreated with PS1145, there was an increase in the number of radiation-induced senescence-like endothelial cells 5 days after 8 Gy irradiation, while pretreatment with PS1145 significantly ameliorated the induction in senescence of HUVECs compared to the control group. Electrophoretic mobility shift assay (EMSA) showed that pretreatment with PS1145 inhibited the radiation-induced NF-κB activation, which regulates cell fate in response to genotoxic stress. In addition, Western blotting demonstrated less translocation of p65 from cytoplasm to nucleus. Furthermore, real-time polymerase chain reaction (PCR) showed that pretreatment with PS1145 inhibited the increase of mRNA expressions of interleukin-6 (IL-6) and p53-induced death domain (PIDD) protein, which have been show to play crucial roles in both senescence and apoptosis (P < 0.05). TUNEL staining revealed an increase in apoptotic HUVECs in the group pretreated with PS1145 after irradiation. The series of functional assays further showed that radiation-induced senescence-like HUVECs had malfunctions in migration, invasion and formation of capillary-like structures, compared with the sham-irradiated and untreated, irradiated groups. Taken together, these findings indicate that the angiogenic capacity of radiation-induced senescence-like HUVECs decreased, and that irradiation caused vascular endothelial cells to gain a senescence-like phenotype through the DSB/NEMO/NF-κB signal pathway. The data suggests that NEMO may be a critical switch that regulates cellular senescence and apoptosis caused by exposure to radiation, and provides new clues for the clinical potential of the combination of radiotherapy and angiogenesis inhibitors.

Xiaorong Dong, Fan Tong, Cai Qian, Ruiguang Zhang, Jihua Dong, Gang Wu, and Yu Hu "NEMO Modulates Radiation-Induced Endothelial Senescence of Human Umbilical Veins Through NF-κB Signal Pathway," Radiation Research 183(1), 82-93, (23 December 2014). https://doi.org/10.1667/RR13682.1
Received: 19 January 2014; Accepted: 1 August 2014; Published: 23 December 2014
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top