How to translate text using browser tools
15 October 2019 A Scalable Database of Organ Doses for Common Diagnostic Fluoroscopy Procedures of Children: Procedures of Historical Practice for Use in Radiation Epidemiology Studies
Emily L. Marshall, Dhanashree Rajderkar, Justin L. Brown, Elliott J. Stepusin, David Borrego, James Duncan, Christina L. Sammet, Julie R. Munneke, Marilyn L. Kwan, Diana L. Miglioretti, Rebecca Smith-Bindman, Wesley E. Bolch
Author Affiliations +
Abstract

Assessment of health effects from low-dose radiation exposures in patients undergoing diagnostic imaging is an active area of research. High-quality dosimetry information pertaining to these medical exposures is generally not readily available to clinicians or epidemiologists studying radiation-related health risks. The purpose of this study was to provide methods for organ dose estimation in pediatric patients undergoing four common diagnostic fluoroscopy procedures: the upper gastrointestinal (UGI) series, the lower gastrointestinal (LGI) series, the voiding cystourethrogram (VCUG) and the modified barium swallow (MBS). Abstracted X-ray film data and physician interviews were combined to generate procedure outlines detailing X-ray beam projections, imaged anatomy, length of X-ray exposure, and presence and amount of contrast within imaged anatomy. Monte Carlo radiation transport simulations were completed for each of the four diagnostic fluoroscopy procedures across the 162-member (87 males and 75 females) University of Florida/National Cancer Institute pediatric phantom library, which covers variations in both subject height and weight. Absorbed doses to 28 organs, including the active marrow and bone endosteum, were assigned for all 162 phantoms by procedure. Additionally, we provide dose coefficients (DCs) in a series of supplementary tables. The DCs give organ doses normalized to procedure-specific dose metrics, including: air kerma-area product (µGy/mGy · cm2), air kerma at the reference point (µGy/µGy), number of spot films (SF) (µGy/number of SFs) and total fluoroscopy time (µGy/s). Organs accumulating the highest absorbed doses per procedure were as follows: kidneys between 0.9–25.4 mGy, 1.1–16.6 mGy and 1.1–9.7 mGy for the UGI, LGI and VCUG procedures, respectively, and salivary glands between 0.2–3.7 mGy for the MBS procedure. Average values of detriment-weighted dose, a phantom-specific surrogate for the effective dose based on ICRP Publication 103 tissue-weighting factors, were 0.98 mSv, 1.16 mSv, 0.83 mSv and 0.15 mSv for the UGI, LGI, VCUG and MBS procedures, respectively. Scalable database of organ dose coefficients by patient sex, height and weight, and by procedure exposure time, reference point air kerma, kerma-area product or number of spot films, allows clinicians and researchers to compute organ absorbed doses based on their institution-specific and patient-specific dose metrics. In addition to informing on patient dosimetry, this work has the potential to facilitate exposure assessments in epidemiological studies designed to investigate radiation-related risks.

©2019 by Radiation Research Society. All rights of reproduction in any form reserved.
Emily L. Marshall, Dhanashree Rajderkar, Justin L. Brown, Elliott J. Stepusin, David Borrego, James Duncan, Christina L. Sammet, Julie R. Munneke, Marilyn L. Kwan, Diana L. Miglioretti, Rebecca Smith-Bindman, and Wesley E. Bolch "A Scalable Database of Organ Doses for Common Diagnostic Fluoroscopy Procedures of Children: Procedures of Historical Practice for Use in Radiation Epidemiology Studies," Radiation Research 192(6), 649-661, (15 October 2019). https://doi.org/10.1667/RR15445.1
Received: 31 May 2019; Accepted: 17 September 2019; Published: 15 October 2019
RIGHTS & PERMISSIONS
Get copyright permission
Back to Top