Open Access
How to translate text using browser tools
26 August 2016 Proceedings Introduction: Phylogeny and Ecological Diversification in Carex
Andrew L. Hipp, Pedro Jiménez-Mejías, Marcia J. Waterway, Marlene Hahn, Eric H. Roalson
Author Affiliations +

Seven papers in this quarter's issue of Systematic Botany come from a symposium on phylogeny and ecological diversification in sedges (Carex L., Cyperaceae) convened at the Botany 2015 meetings in Edmonton. The symposium was timely, as the genus had recently been circumscribed to include the four segregate genera Cymophyllus Mack., Kobresia Willd., Schoenoxiphium Nees, and Uncinia Pers. (Global Carex Group 2015). Irrespective of this recircumscription, Carex is an impressively diverse genus. At approximately 2,000 species, Carex is the second largest genus of the temperate zone (after Astragalus L., Zarre and Azani 2013; though cf. Frodin 2004, at which time Carex was considered the largest). It is cosmopolitan in distribution (including the Antarctic archipelagos; Burton 2012) and ecologically important in habitats that range from tundra and dry sand prairies to open wetlands and bottomland forests (Suttie et al. 2005). Carex is an important food source for waterfowl (Sedinger 1984; Gadallah and Jefferies 1995) and ungulates (Uresk and Paintner 1985; Fortin et al. 2003; Evans et al. 2004; Shrestha et al. 2012), and several species have medicinal or nutritional properties for humans as well (Fiorentino et al. 2008; Li et al. 2009; Roy et al. 2012). Given its importance for ecosystems and thus also humans, Carex ought to be a well-understood genus from an evolutionary and ecological standpoint.

Yet due in part to the taxonomic difficulties that the genus presents, its utility as a model for understanding ecological diversification and niche evolution is not fully realized (Waterway et al. 2009). This is unfortunate, as high species number and rapid diversification of sedges make it ideal for clade-based studies of biodiversity patterns. Numerous studies have addressed phylogenetic relationships within the Cyperaceae at both broad and fine scales (reviewed in Global Carex Group 2016a, this issue). In recent years, several studies have used the phylogeny of Carex or Cyperaceae to investigate patterns and timing of lineage diversification (Gehrke and Linder 2009, 2011; Escudero et al. 2012a; Escudero and Hipp 2013; Spalink et al. 2016a, 2016b), the interaction between ecological and chromosomal evolution (Hipp 2007; Hipp et al. 2010; Chung et al. 2011, 2012; Escudero et al. 2012b, 2013a, 2013b), the understanding of biogeographic patterns (King and Roalson 2009; Escudero et al. 2010; Jiménez-Mejías et al. 2012; Villaverde et al. 2015a, 2015b), and patterns of community assembly (Slingsby and Verboom 2006; Dabros and Waterway 2008; Waterway et al. 2009; Elliott et al. 2016). Considering the diversity of the genus, its ecological importance in the temperate zone, and the promising findings of these first studies, Carex provides ample but largely untapped opportunity to plant evolutionary biologists and ecologists to understand fundamental processes of lineage and ecological diversification.

Our symposium investigated the ecological dimensions of Carex diversification in the context of a global revision of Carex classification by The Global Carex Group ( http://systematics.mortonarb.org/cariceae). The symposium featured six talks on phylogenetic and ecological diversification of sedges. Seven papers on this theme are presented here. Two are foundational, providing a global phylogeny that serves as the underpinning of our work (Global Carex Group 2016a) and addressing a fundamental terminology issue in the genus (Jiménez-Mejías et al. 2016). Two are methodological, introducing approaches to linking NCBI data back to specimens for analytical purposes (Global Carex Group 2016b) and using Carex morphological diversity as a subject of collaborative research with K-12 students (Hahn et al. 2016). Three use phylogenetic data to investigate ecological diversification, focusing on trait evolution (Hoffmann and Gebauer 2016), community assembly (Waterway et al. 2016), and the effects of holocentry on lineage diversification (Escudero et al. 2016).

This set of symposium papers only scratches the surface of what is possible with a densely sampled phylogeny of a large genus such as Carex. Deeper sampling of the genus aimed at a more comprehensive phylogenetic hypothesis is ongoing as are additional studies relating ecological differentiation, biogeographic patterns, and chromosomal evolution to phylogenetic relationships. We expect that the phylogenetic work being conducted by the Global Carex Group will set the stage for expanded and more refined studies of lineage diversification and ecological adaptation in this challenging genus, building in part on the work published here.

Literature cited

1.

Burton, R. 2012. A field guide to the wildlife of South Georgia. Princeton: Princeton University Press. Google Scholar

2.

Chung, K.-S., A. L. Hipp, and E. H. Roalson. 2012. Chromosome number evolves independently of genome size in a clade with non-localized centromeres (Carex: Cyperaceae). Evolution 66: 2708–2722. Google Scholar

3.

Chung, K.-S., J. A. Weber, and A. L. Hipp. 2011. Dynamics of chromosome number and genome size variation in a cytogenetically variable sedge (Carex scoparia var. scoparia, Cyperaceae). American Journal of Botany 98: 122–129. Google Scholar

4.

Dabros, A. and M. J. Waterway. 2008. Segregation of sedge species (Cyperaceae) along environmental gradients in fens of the Schefferville region, northern Quebec. Pp. 145–161 in Sedges: uses, diversity, and systematics of the Cyperaceae , eds. R. F. C. Naczi and B. A. Ford. St. Louis: Missouri Botanical Garden Press. Google Scholar

5.

Elliott, T. L., M. J. Waterway, and T. J. Davies. 2016. Contrasting lineagespecific patterns conceal community phylogenetic structure in larger clades. Journal of Vegetation Science 27: 69–79. Google Scholar

6.

Escudero, M., P. Vargas, P. Arens, N. J. Ouborg, and M. Luceño. 2010. The east-west-north colonization history of the Mediterranean and Europe by the coastal plant Carex extensa (Cyperaceae). Molecular Ecology 19: 352–370. Google Scholar

7.

Escudero, M., A. L. Hipp, M. J. Waterway, and L. M. Valente. 2012a. Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Molecular Phylogenetics and Evolution 63: 650–655. Google Scholar

8.

Escudero, M., A. L. Hipp, T. F. Hansen, K. L. Voje, and M. Luceño. 2012b. Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae). The New Phytologist 195: 237–247. Google Scholar

9.

Escudero, M. and A. L. Hipp. 2013. Shifts in diversification rates and clade ages explain species richness in higher-level sedge taxa (Cyperaceae). American Journal of Botany 100: 2403–2411. Google Scholar

10.

Escudero, M., E. Maguilla, and M. Luceño. 2013a. Selection by climatic regime and neutral evolutionary processes in holocentric chromosomes (Carex gr. laevigata: Cyperaceae): a microevolutionary approach. Perspectives in Plant Ecology, Evolution and Systematics 15: 118–129. Google Scholar

11.

Escudero, M., J. A. Weber, and A. L. Hipp. 2013b. Species coherence in the face of karyotype diversification in holocentric organisms: the case of a cytogenetically variable sedge (Carex scoparia, Cyperaceae). Annals of Botany 112: 515–526. Google Scholar

12.

Escudero, M., J. I. Márquez-Corro, and A. L. Hipp. 2016. The phylogenetic origins and evolutionary history of holocentric chromosomes. Systematic Botany 41: 580–585. Google Scholar

13.

Evans, S. G., A. J. Pelster, W. C. Leininger, and M. J. Trlica. 2004. Seasonal diet selection of cattle grazing a montane riparian community. Journal of Range Management 57: 539–545. Google Scholar

14.

Fiorentino, A., A. Ricci, B D'Abrosca, S. Pacifico, A. Golino, M. Letizia, S. Piccolella, and P. Monaco. 2008. Potential food additives from Carex distachya roots: identification and in vitro antioxidant properties. Journal of Agricultural and Food Chemistry 56: 8218–8225. Google Scholar

15.

Fortin, D., J. M. Fryxell, L O'Brodovich, and D. Frandsen. 2003. Foraging ecology of bison at the landscape and plant community levels: the applicability of energy maximization principles. Oecologia 134: 219–227. Google Scholar

16.

Frodin, D. G. 2004. History and concepts of big plant genera. Taxon 53: 753–776. Google Scholar

17.

Gadallah, F. L. and R. L. Jefferies. 1995. Comparison of the nutrient contents of the principal forage plants utilized by lesser snow geese on summer breeding grounds. Journal of Applied Ecology 32: 263–275. Google Scholar

18.

Gehrke, B. and H. P. Linder. 2009. The scramble for Africa: pan-temperate elements on the African high mountains. Proceedings. Biological Sciences 276: 2657–2665. Google Scholar

19.

Gehrke, B. and H. P. Linder. 2011. Time, space and ecology: why some clades have more species than others. Journal of Biogeography 38: 1948–1962. Google Scholar

20.

Global Carex Group. 2015. Making Carex monophyletic (Cyperaceae, tribe Cariceae): a new broader circumscription. Botanical Journal of the Linnean Society 179: 1–42. Google Scholar

21.

Global Carex Group. 2016a. Megaphylogenetic specimen-level approaches to the Carex (Cyperaceae) phylogeny using ITS, ETS, and matK sequences: implications for classification. Systematic Botany 41: 500–518. Google Scholar

22.

Global Carex Group. 2016b. Specimens at the center: an informatics workflow and toolkit for specimen-level analysis of public DNA database data. Systematic Botany 41: 529–539. Google Scholar

23.

Hahn, M., B. Budaitis, J. Grant, D. Wetta, P. Murphy, A. Cotton, K. Pham, and A. L. Hipp. 2016. Training the next generation of sedge taxonomists: School kids tackle sedge morphological diversity. Systematic Botany 41: 540–551. Google Scholar

24.

Hipp, A. L. 2007. Non-uniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution 61: 2175–2194. Google Scholar

25.

Hipp, A. L., P. E. Rothrock, R. Whitkus, and J. A. Weber. 2010. Chromosomes tell half of the story: the correlation between karyotype rearrangements and genetic diversity in sedges, a group with holocentric chromosomes. Molecular Ecology 19: 3124–3138. Google Scholar

26.

Hoffmann, M. H. and S. Gebauer. 2016. Quantitative morphological and molecular divergence in replicated and parallel radiations in Carex (Cyperaceae) using symbolic data analysis. Systematic Botany 41: 552–557. Google Scholar

27.

Jiménez-Mejías, P., M. Luceño, K. A. Lye, C. Brochmann, and G. Gussarova. 2012. Genetically diverse but with surprisingly little geographical structure: the complex history of the widespread herb Carex nigra (Cyperaceae). Journal of Biogeography 39: 2279–2291. Google Scholar

28.

Jiménez-Mejías, P., M. Luceño, K. L. Wilson, M. J. Waterway, and E. H. Roalson. 2016. Clarification of the use of the terms perigynium and utricle in Carex L. (Cyperaceae). Systematic Botany 41: 519–528. Google Scholar

29.

King, M. G. and E. H. Roalson 2009. Discordance between phylogenetics and coalescent-based divergencemodelling: exploring phylogeographic patterns of speciation in the Carex macrocephala species complex. Molecular Ecology 18: 468–482. Google Scholar

30.

Li, L., G. E. Henry, and N. P. Seeram. 2009. Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds. Journal of Agricultural and Food Chemistry 57: 7282–7287. Google Scholar

31.

Roy, B., B. R. Giri, C. Mitali, and A. Swargiary. 2012. Ultrastructural and biochemical alterations in rats exposed to crude extract of Carex baccans and Potentilla fulgens. Microscopy and Microanalysis 18: 1067–1076. Google Scholar

32.

Sedinger, S. S. 1984. Protein and amino acid composition of tundra vegetation in relation to nutritional requirements of geese. The Journal of Wildlife Management 48: 1128–1136. Google Scholar

33.

Shrestha, B., P. Kindlmann, and S. R. Jnawali. 2012. Interactions between the Himalayan Tahr, livestock and snow leopards in the Sagarmantha National Park. Pp. 157–176 in Himalayan biodiversity in the changing world , ed. P. Kindlmann. Dordrecht: Springer. Google Scholar

34.

Slingsby, J. A. and G. A. Verboom. 2006. Phylogenetic relatedness limits co-occurrence at fine spatial scales: Evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. American Naturalist 168: 14–27. Google Scholar

35.

Spalink, D., B. T. Drew, M. C. Pace, J. G. Zaborsky, P. Li, K. M. Cameron, T. J. Givnish, and K. J. Sytsma. 2016a. Evolution of geographical place and niche space: Patterns of diversification in the North American sedge (Cyperaceae) flora. Molecular Phylogenetics and Evolution 95: 183–195. Google Scholar

36.

Spalink, D., B. T. Drew, M. C. Pace, J. G. Zaborsky, J. R. Starr, K. M. Cameron, T. J. Givnish, and K. J. Sytsma. 2016b. Biogeography of the cosmopolitan sedges (Cyperaceae) and the area‐richness correlation in plants. Journal of Biogeography , https://doi.org/10.1111/jbi.12802. Google Scholar

37.

Suttie, J. M., S. G. Reynolds, and C. Batello. 2005. Grasslands of the World. FAO, Rome. Google Scholar

38.

Uresk, D. W. and W. W. Paintner. 1985. Cattle diets in a ponderosa pine forest in the northern Black Hills. Journal of Range Management 38: 440–442. Google Scholar

39.

Villaverde, T., M. Escudero, M. Luceño, and S. Martín-Bravo. 2015a. Long-distance dispersal during the middle—late Pleistocene explains the bipolar disjunction of Carex maritima (Cyperaceae). Journal of Biogeography 42: 1820–1831. Google Scholar

40.

Villaverde, T., M. Escudero, S. Martín-Bravo, L. P. Bruederle, M. Luceño, and J. R. Starr. 2015b. Direct long-distance dispersal best explains the bipolar distribution of Carex arctogena (Carex sect. Capituligerae, Cyperaceae). Journal of Biogeography 42: 1514–1525. Google Scholar

41.

Waterway, M. J., T. Hoshino, and T. Masaki. 2009. Phylogeny, species richness, and ecological specialization in Cyperaceae tribe Cariceae. Botanical Review 75: 138–159. Google Scholar

42.

Waterway, M. J., K. T. Martins, A. Dabros, A. Prado, and M. J. Lechowicz. 2016. Ecological and evolutionary diversification within the genus Carex (Cyperaceae): Consequences for community assembly in subarctic fens. Systematic Botany 41: 558–579. Google Scholar

43.

Zarre, S. and N. Azani. 2013. Perspectives in taxonomy and phylogeny of the genus Astragalus: a review. Proceedings. Biological Sciences 3: 1–6. Google Scholar
© 2016 by the American Society of Plant Taxonomists
Andrew L. Hipp, Pedro Jiménez-Mejías, Marcia J. Waterway, Marlene Hahn, and Eric H. Roalson "Proceedings Introduction: Phylogeny and Ecological Diversification in Carex," Systematic Botany 41(3), 498-499, (26 August 2016). https://doi.org/10.1600/036364416X692893
Published: 26 August 2016
Back to Top