The effect of ambient temperature before and during laying on egg volume in birds has been studied by many authors. The objective of this paper is to show that trends in daily temperatures changes can also influence egg volume. The study was carried out near Warsaw, Poland in 1994 and 1995. We ascertained the laying sequence, size and volume of 1070 eggs in 211 clutches of the Tree Sparrow. The effect of the trend in temperature on the mean egg volume in a clutch explained 0.4% of its variation (0.03% to 4.2%, depending on the brood-period), and the effect of actual temperature explained 0.9% (0.5% to 1.6% depending on the brood-period). The joint effect of temperature and its trend explained 3.1% (1.7% to 8.9% depending on the brood-period) of variation in the mean egg volume in a clutch. The authors discuss possible mechanisms of the effect of temperature and temperature trend on egg volume.
How to translate text using browser tools
1 July 2003
The Effect of Trends in Ambient Temperature on Egg Volume in the Tree Sparrow Passer montanus
Miłosława Barkowska,
Jan Pinowski,
Barbara Pinowska
T. R. Anderson
1984. A quantitative analysis of overlap in nestling diets of village populations of sparrows (Passer spp. ) in Poland. Ekol. Pol. 32: 693–707. Google Scholar
C. D. Ankney
,
D. M. Scott
1980. Changes in nutrient reserves of breeding Brown-headed Cowbirds. Auk 97: 684–696. Google Scholar
C. D. Ankney
,
D. M. Scott
1988. Size of digestive organs in breeding Brown-headed Cowbirds Molothrus ater, relative to diet. Can. J. Zool. 66: 1254–1257. Google Scholar
A. M. Bolotnikov
,
A. I. Shurakov
,
J. N. Kamensky
,
L. N. Dobrinsky
1985. [Ecology of early onthogenesis of birds]. Akad. Nauk USSR, Ural Sci. Centr., Sverdlovsk. Google Scholar
M. Bolton
,
D. C. Houston
,
P. Monaghan
1992. Nutritional constraints on egg formation in the Lesser Black-backed Gull: an experimental study. J. Anim. Ecol. 61: 521–532. Google Scholar
C. Carey
1996. Female reproductive energetics. In:
C. Carey (ed.).
Avian energetics and nutritional ecology. Chapman and Hall, New York, pp. 324–374. Google Scholar
C. E. Clark
,
M. Amin
1965. The adaptability of chickens to various temperatures. Poultry Sci. 44: 1003–1009. Google Scholar
C. R. Dykstra
,
W. H. Karasov
1992. Changes in gut structure and function in House Wrens (Troglodytes aedon) in response to increasing energy demands. Physiol. Zool. 65: 422–442. Google Scholar
G. Grün
1964. Untersuchungen zur Ökologie und wirtschaftlichen Bedeutung des Feldsperlings, Passer montanus (L.), unter besonderer Berücksichtigung seiner Ernährungsweise. Ph.D. thesis, Univ. Greifswald, Greifswald. Google Scholar
S. Haftorn
1986. Clutch size, intraclutch size variation, and breeding strategy in the Goldcrest Regulus regulus.
J. Ornithol. 127: 291–301. Google Scholar
D. C. Houston
1999. Nutritional constraints on breeding birds. In:
N. J. Adams,
R. H. Slotow (eds).
22 Int. Ornithol. Congr., Durban: Johannesburg, Bird Life South Africa, pp. 52–66. Google Scholar
D. C. Houston,
D. Donnan,
P. J. Jones,
I. Hamilton,
D. Osborne
1995a. Changes in the muscle condition of female Zebra Finches Poephila guttata during egg laying and the role of protein storage in bird skeletal muscle. Ibis 137. 322–328. Google Scholar
D. C. Houston
,
D. Donnan
,
P. J. Jones
1995b. The source of the nutrients required for egg production in Zebra Finches Poephila guttata.
J. Zool. London 235: 469–482. Google Scholar
D. C. Houston
,
D. Donnan
,
P. J. Jones
1995c. Use of labelled methionine to investigate a protein storage function of avian muscle to contribute to egg production. J. Com. Physiol. B 165: 161–164. Google Scholar
D. F. Hoyt
1979. Practical methods of estimate volume and fresh weight of birds eggs. Auk 96: 73–77. Google Scholar
T. M. Huston
,
W. P. Joiner
,
J. L. Carmon
1957. Breed differences in egg production of domestic fowl held at high environmental temperatures. Poultry Science 36: 1247–1254. Google Scholar
A. Järvinen
1991. Proximate factors affecting egg mass in subarctic hole-nesting passerines. Ornis Fenn. 68: 99–104. Google Scholar
A. Järvinen
,
M. Pryl
1989. Egg dimensions of the Great Tit Parus major in southern Finland. Ornis Fenn. 66: 69–74. Google Scholar
A. Järvinen
,
R. A. Väisanen
1984. Reproduction of Pied Flycatchers (Ficedula hypoleuca) in good and bad breeding seasons in a northern marginal area. Auk 101: 439–450. Google Scholar
A. Järvinen
,
Y. Ylimaunu
1986. Intraclutch egg-size variation in birds: physiological responses of individuals to fluctuations of environmental conditions. Auk 103: 235–237. Google Scholar
W. H. Karasov
1996. Digestive plasticity in avian energetics and feeding ecology. In:
C. Carey (ed.).
Avian energetics and nutritional ecology. Chapman and Hall, New York, pp. 61–84. Google Scholar
S. C. Kendeigh
1941. Lengh of day and energy requirements for gonad development and egg-laying. Ecology 22: 237–248. Google Scholar
S. C. Kendeigh
1969. Energy responses of birds to their thermal environments. Wilson Bull. 81: 441–449. Google Scholar
S. C. Kendeigh,
V. R. Dolnik,
V. M. Gavrilov
1977. Avian bioenergetics. In:
J. Pinowski,
S. C. Kendeigh
Granivorous birds in ecosystems. Cambridge Univ. Press, Cambridge, pp. 127–204. Google Scholar
S. C. Kendeigh
,
T. C. Kramer
,
F. Hamerstrom
1956. Variations in egg characteristics of the House Wren. Auk 73: 42–65. Google Scholar
J. R. King
1973. Energetics of reproduction in birds. In:
S. Farner (ed.).
Breeding biology of birds. National Academy of Sciences, Washington, D. C., pp. 78–107. Google Scholar
D. G. Krementz
,
C. D. Ankney
1886. Bioenergetics of egg production by female House Sparrows. Auk 103: 299–305. Google Scholar
D. J. Levey
,
W. H. Karasov
1989. Digestive responses of temperate birds, switched to fruit or insect diet. Auk 106: 675–686. Google Scholar
F. W. Lorenz
,
H. J. Almquist
1936. Seasonal variations in egg quality. Poultry Sci. 15: 14–18. Google Scholar
R. D. Magrath
1992. Seasonal changes in egg-mass within and among clutches of birds: general explanations and a field study of the Blackbird Turdus merula. Ibis 134: 171–179. Google Scholar
T. E. Martin
1987. Food as a limit on breeding birds: a lifehistory perspective. Ann. Rev. Ecol. Syst. 18: 453–487. Google Scholar
W. J. Mueller
1961. The effect of constant and fluctuating environmental temperatures on the biological performance of laying pullets. Poultry Sci. 40:1562–1571. Google Scholar
E. C. Murphy
1978. Seasonal variation in reproductive output of House Sparrow: the determination of clutch size. Ecology 59: 1189–1199. Google Scholar
E. C. Murphy
,
E. Haukioja
1986. Clutch size in nidicolous birds. Current Ornithol. 4: 141–180. Google Scholar
R. Näger
1990. On the effects of small scale variation in temperature and food availability on laying date and egg size in Great Tits (Parus major). In:
J. Blondel,
A. Gosler,
J.-D. Lebreton,
R. McCleery (eds).
Population biology of passerine birds. NATO ASI Ser. vol G. 24, Springer-Verlag, Berlin- Heidelberg, pp. 187–197. Google Scholar
R. G. Näger
,
A. J. van Noordwijk
1992. Energetic limitation in the egg-laying period of Great Tits. Proc. R. Soc. London B. 249: 259–263. Google Scholar
R. G. Näger
,
H. S. Zandt
1994. Variation in egg size in Great Tits. Ardea 82: 315–328. Google Scholar
J. A. Nilsson
1991. Clutch size determination in the Marsh Tit (Parus palustris). Ecology 72: 1757–1762 Google Scholar
J. A. Nilsson
,
E. Svensson
1993. Causes and consequences of egg mass variation between and within Blue Tit clutches. J. Zool. London 230: 469–481. Google Scholar
T. O'Connor
1978. Nest—box insulation and the timing of laying in the Wytham woods population of Great Tit Parus major. Ibis 120: 534–537. Google Scholar
M. Ojanen
1983a. Effects of laying sequence and ambient temperature on the composition of eggs of the Great Tit Parus major and the Pied Flycatcher Ficedula hypoleuca.
Ann. Zool. Fenn. 20: 65–71 Google Scholar
M. Ojanen
1983b. Egg development and the related nutrient reserve do depletion in the Pied Flycatcher, Ficedula hypoleuca. Ann. Zool. Fenn. 20: Google Scholar
M. Ojanen
,
M. Orell
,
R. A. Väisänen
1978. Egg and clutch sizes in four passerine species in northern Finland. Ornis Fenn. 55: 60–68. Google Scholar
M. Ojanen
,
Orell
,
M.
,
R. A. Väisänen
1979. Role of the heredity in egg size variation in the Great Tit Parus major and the Pied Flycatcher Ficedula hypoleuca.
Ornis Scand. 10: 22–28. Google Scholar
M. Ojanen
,
M. Orell
,
R. A. Väisänen
1981. Egg size variation within passerine clutches effects of ambient temperature and laying sequence. Ornis Fenn. 58: 93–108. Google Scholar
A. Pikulski
1986. [Breeding biology and ecology of Savi's Warbler (Locustella luscinioides) at Milicz fish-ponds (preliminary report)]. Ptaki Śląska 4: 2–39. Google Scholar
B. Pinowska
1975. Food of female House Sparrows (Passer domesticus L.) in relation to stages of the nestling cycle. Pol. Ecol. Stud. 1: 211–225. Google Scholar
B. Pinowska
1979. The effect of energy and building resources of females on the production of House Sparrows (Passer domesticus [L.]) populations. Ekol. Pol. 27: 363–396. Google Scholar
B. Pinowska
,
M. Barkowska
,
J. Pinowski
,
K.-H. Hahm
,
N. Lebedeva
2002. Influence of temperature on Tree Sparrow Passer montanus egg mass according to laying sequence. Intern. Stud. Sparrows 29: 33–47. Google Scholar
J. Pinowski
1965. Dispersal of young Tree Sparrows (Passer m. montanus [L.]). Bull. Acad. Pol. Sci. II Ser. Sci. Biol. 13: 509–514. Google Scholar
J. Pinowski
1967. Die Auswahl des Brutbiotops beim Feldsperling (Passer m. montanus [L.]). Ekol. Pol. Ser. A. 15: 1–30. Google Scholar
J. Pinowski,
S. C. Kendeigh (eds).
1977. Granivorous birds in ecosystems, Cambridge Univ. Press, Cambridge. Google Scholar
J. Pinowski,
M. Barkowska,
K.-H. Hahm,
N. Lebedeva
2001a. Variation in Tree Sparrow Passer montanus eggs. Intern. Stud. Sparrows 27–28: 5–34. Google Scholar
J. Pinowski
,
M. Barkowska
,
K.-H. Hahm
,
N. Lebedeva
2001b. Laying interruption in the Tree Sparrow Passer montanus. Acta Ornithol. 36: 13–18. Google Scholar
J. Potti
1993. Environmental, ontogenetic and genetic variation in egg size of Pied Flycatchers. Can. J. Zool.
, 71: 1534–1542. Google Scholar
J. Potti
1999. Maternal effects and the pervasive impact of nestling history on egg size in a passerine bird. Evolution 53: 279–285. Google Scholar
E. Rahn
,
P. R. Sotherland
,
C. V. Paganelli
1985 Interrelationships between egg mass and adult body mass and metabolism among passerine birds. J. Ornithol. 126: 263–271. Google Scholar
S. L. Ramsay
,
D. C. Houston
1997. Nutritional constraints on egg production in the Blue Tit: a supplementary feeding study. J. Anim. Ecol. 66: 649–657. Google Scholar
S. L. Ramsay
,
D. C. Houston
1998. The effect of dietary amino acid composition on egg production in Blue Tits. Proc. R. Soc. London B, 265: 1401–1415. Google Scholar
S. L. Ramsay
,
D. C. Houston
2003. Amino acid composition of some woodland arthropods and its implications for breeding tits and other passerines. Ibis 145: 227–232. Google Scholar
R. E. Ricklefs
1974. Energetics of reproduction in birds. In: Paynter R. A. Avian energetics. Nuttall Ornithological Club, Cambridge, Massachusetts, pp. 152–292. Google Scholar
L. Schifferli
1976. Factors affecting weight and conditions in the House Sparrow particularly when breeding. PhD thesis, University of Oxford. Google Scholar
L. Schifferli
1980. Changes in the fat reserves in female House Sparrows Passer domesticus during egg laying. Proc. Int. Ornithol. Congr. 17: 1129–1135. Google Scholar
I. R. Stevenson
,
D. M. Bryant
2000. Climate change and constraints on breeding. Nature 406: 366–367. Google Scholar
J. D. Styrsky
,
P. Eckerle
,
C. F. Thompson
1999. Fitness-related consequences of egg-mass in nestling house wren. Proc. R. Soc. Lond. B 266: 1253–1258. Google Scholar
J. D. Styrsky
2000. Food-supplementation does not override the effect of egg mass on fitness-related traits of nestling House Wren. J. Anim. Ecol. 69: 690–702. Google Scholar
A. J. van Noordwijk
1981. Genetic variation in egg dimensions in natural populations of the Great Tit. Genetica 55: 221–232. Google Scholar
A. J. van Noordwijk
1984. Quantitative genetics in natural populations of birds illustrated with examples from the Great Tit, Parus major. In:
K. Wahrmann,
V. L. Loeschcke (eds).
Population biology and evolution. Springer-Verlag, Berlin-Heidelberg. pp. 67–79. Google Scholar
G. E. Walsberg
1983. Avian ecological energetics. In:
J. R. Farner,
J. R. King,
K. C. Parkes (eds).
Avian Biology, vol. VII, pp. 161–220. Google Scholar
S. Ward
1995 Causes and consequences of egg size variation in swallows (Hirundo rustica). Avocetta 19: 189–201. Google Scholar
S. Ward
1996. Energy expenditure of female Barn Swallows Hirundo rustica during egg formation. Physiol. Zool. 69: 930–951. Google Scholar
J. B. Williams
1987. Field metabolism and food consumption of Savannah Sparrows during the breeding season. Auk 104: 277–289. Google Scholar
T. D. Williams
1994. Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol. Review 68: 35–59. Google Scholar
T. D. Williams
1996. Variation in reproductive effort in female Zebra Finches (Taeniopygia guttata) in relation to nutrientspecific dietary supplements during egg laying. Physiol. Zool. 69: 1255–1275. Google Scholar
T. D. Williams,
E. G. Cooch
1996. Egg size, temperature, and laying sequence: why do Snow Geese lay big eggs when it's cold? Functional Ecol. 10: 112–118. Google Scholar
Acta Ornithologica
Vol. 38 • No. 1
July 2003
Vol. 38 • No. 1
July 2003
ambient temperature
egg volume
Passer montanus
Tree Sparrow