BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.
Human activities over the past few centuries have profoundly changed the functioning of the earth system as a whole. These changes are particularly evident in the high latitudes of the Northern Hemisphere, where environmental change has been pronounced and rapid. Such changes have implications beyond the region, as they can lead to two important feedback processes: the ice-albedo feedback and the terrestrial carbon cycle–climate feedback. These processes play an exceptionally important role in earth system functioning, particularly because they may switch this century from damping the effects of anthropogenic climate change to accelerating them. Rapid environmental change in the high latitudes also has consequences for issues of direct importance to humans, particularly water resources.
Despite their generally isolated geographic locations, the freshwaters of the north are subjected to a wide spectrum of environmental stressors. High-latitude regions are especially sensitive to the effects of recent climatic warming, which have already resulted in marked regime shifts in the biological communities of many Arctic lakes and ponds. Important drivers of these limnological changes have included changes in the amount and duration of snow and ice cover, and, for rivers and lakes in their deltas, the frequency and extent of spring floods. Other important climate-related shifts include alterations in evaporation and precipitation ratios, marked changes in the quality and quantity of lake and river water inflows due to accelerated glacier and permafrost melting, and declining percentages of precipitation that falls as snow. The depletion of stratospheric ozone over the north, together with the clarity of many Arctic lakes, renders them especially susceptible to damage from ultraviolet radiation. In addition, the long-range atmospheric transport of pollutants, coupled with the focusing effects of contaminant transport from biological vectors to some local ecosystems (e.g., salmon nursery lakes, ponds draining seabird colonies) and biomagnification in long food chains, have led to elevated concentrations of many persistent organic pollutants (e.g., insecticides, which have never been used in Arctic regions) and other pollutants (e.g., mercury). Rapid development of gas and oil pipelines, mining for diamonds and metals, increases in human populations, and the development of all-season roads, seaports, and hydroelectric dams will stress northern aquatic ecosystems. The cumulative effects of these stresses will be far more serious than those caused by changing climate alone.
The permafrost regions occupy about 25% of the Northern Hemisphere's terrestrial surface, and more than 60% of that of Russia. Warming, thawing, and degradation of permafrost have been observed in many locations in recent decades and are likely to accelerate in the future as a result of climatic change. Changes of permafrost have important implications for natural systems, humans, and the economy of the northern lands. Results from mathematical modeling indicate that by the mid-21st century, near-surface permafrost in the Northern Hemisphere may shrink by 15%–30%, leading to complete thawing of the frozen ground in the upper few meters, while elsewhere the depth of seasonal thawing may increase on average by 15%–25%, and by 50% or more in the northernmost locations. Such changes may shift the balance between the uptake and release of carbon in tundra and facilitate emission of greenhouse gases from the carbon-rich Arctic wetlands. Serious public concerns are associated with the effects that thawing permafrost may have on the infrastructure constructed on it. Climate-induced changes of permafrost properties are potentially detrimental to almost all structures in northern lands, and may render many of them unusable. Degradation of permafrost and ground settlement due to thermokarst may lead to dramatic distortions of terrain and to changes in hydrology and vegetation, and may lead ultimately to transformation of existing landforms. Recent studies indicate that nonclimatic factors, such as changes in vegetation and hydrology, may largely govern the response of permafrost to global warming. More studies are needed to better understand and quantify the effects of multiple factors in the changing northern environment.
The Arctic zone is full of controversies, unknowns, contrasts, and challenges. The following example is enlightening. Saudi Arabia is a country that has been considered to have almost unlimited possibilities because of its enormous oil earnings. The country has US$60 thousand million purchasing power parity oil income each year for its mere 22 million inhabitants. Astonishingly, the Arctic zone's income from oil, gas, and minerals is at least as large as that of Saudi Arabia, modestly estimated, but the Arctic has less than 4 million people. Most money, however, flows away from the tundra, yet social and environmental problems remain there. A part of the side effect of consuming these resources—largely fossil fuels—returns to the Arctic in the form of greenhouse warming and all its consequences. The Arctic zone now warms at approximately double the rate of the world average.
The Seychelles is a small island state in the western Indian Ocean that is vulnerable to the effects of climate change. This vulnerability led the Intergovernmental Panel on Climate Change (IPCC) in 2001 to express concern over the potential economic and social consequences that may be faced by small island states. Small island states should be prepared to adapt to such changes, especially in view of their dependence on natural resources, such as water and coral reefs, to meet basic human welfare needs. Analysis of long-term data for precipitation, air temperature, and sea-surface temperature indicated that changes are already observable in the Seychelles. The increase in dry spells that resulted in drought conditions in 1999 and the 1998 mass coral bleaching are indicative of the events that are likely to occur under future climate change. Pre−IPCC Third Assessment Report scenarios and the new SRES scenarios are compared for changes in precipitation and air surface temperature for the Seychelles. These intercomparisons indicate that the IS92 scenarios project a much warmer and wetter climate for the Seychelles than do the SRES scenarios. However, a wetter climate does not imply readily available water, but rather longer dry spells with more intense precipitation events. These observations will likely place enormous pressures on water-resources management in the Seychelles. Similarly, sea-surface temperature increases predicted by the HADCM3 model will likely trigger repeated coral-bleaching episodes, with possible coral extinctions within the Seychelles region by 2040. The cover of many coral reefs around the Seychelles have already changed, and the protection of coral-resilient areas is a critical adaptive option.
In a warming climate, permafrost is likely to be significantly reduced and eventually disappear from the sub-Arctic region. This will affect people at a range of scales, from locally by slumping of buildings and roads, to globally as melting of permafrost will most likely increase the emissions of the powerful greenhouse gas methane, which will further enhance global warming. In order to predict future changes in permafrost, it is crucial to understand what determines the presence or absence of permafrost under current climate conditions, to assess where permafrost is particularly vulnerable to climate change, and to identify where changes are already occurring. The Torneträsk region of northern sub-Arctic Sweden is one area where changes in permafrost have been recorded and where permafrost could be particularly vulnerable to any future climate changes. This paper therefore reviews the various physical, biological, and anthropogenic parameters that determine the presence or absence of permafrost in the Torneträsk region under current climate conditions, so that we can gain an understanding of its current vulnerability and potential future responses to climate change. A patchy permafrost distribution as found in the Torneträsk region is not random, but a consequence of site-specific factors that control the microclimate and hence the surface and subsurface temperature. It is also a product of past as well as current processes. In sub-Arctic areas such as northern Sweden, it is mainly the physical parameters, e.g., topography, soil type, and climate (in particular snow depth), that determine permafrost distribution. Even though humans have been present in the study area for centuries, their impacts on permafrost distribution can more or less be neglected at the catchment level. Because ongoing climate warming is projected to continue and lead to an increased snow cover, the permafrost in the region will most likely disappear within decades, at least at lower elevations.
F. S. Chapin, Michael Hoel, Steven R. Carpenter, Jane Lubchenco, Brian Walker, Terry V. Callaghan, Carl Folke, Simon A. Levin, Karl-Göran Mäler, Christer Nilsson, Scott Barrett, Fikret Berkes, Anne-Sophie Crépin, Kjell Danell, Thomas Rosswall, David Starrett, Anastasios Xepapadeas, Sergey A. Zimov
Unprecedented global changes caused by human actions challenge society's ability to sustain the desirable features of our planet. This requires proactive management of change to foster both resilience (sustaining those attributes that are important to society in the face of change) and adaptation (developing new socioecological configurations that function effectively under new conditions). The Arctic may be one of the last remaining opportunities to plan for change in a spatially extensive region where many of the ancestral ecological and social processes and feedbacks are still intact. If the feasibility of this strategy can be demonstrated in the Arctic, our improved understanding of the dynamics of change can be applied to regions with greater human modification. Conditions may now be ideal to implement policies to manage Arctic change because recent studies provide the essential scientific understanding, appropriate international institutions are in place, and Arctic nations have the wealth to institute necessary changes, if they choose to do so.
Shari Gearheard, Warren Matumeak, Ilkoo Angutikjuaq, James Maslanik, Henry P. Huntington, Joe Leavitt, Darlene Matumeak Kagak, Geela Tigullaraq, Roger G. Barry
The Arctic environment, including sea ice, is changing. The impacts of these changes to Inuit and Iñupiat ways of life vary from place to place, yet there are common themes as well. The study reported here involved an exchange of hunters, Elders, and others from Barrow, Alaska, USA, and Clyde River, Nunavut, Canada, as members of a larger research team that also included visiting scientists. Although the physical environments of Barrow and Clyde River are strikingly different, the uses of the marine environment by residents, including sea ice, had many common elements. In both locations, too, extensive changes have been observed in recent years, forcing local residents to respond in a variety of ways. Although generally in agreement or complementary to one another, scientific and indigenous knowledge of sea ice often reflect different perspectives and emphases. Making generalizations about impacts and responses is challenging and should therefore be approached with caution. Technology provides some potential assistance in adapting to changing sea ice, but by itself, it is insufficient and can sometimes have undesirable consequences. Reliable knowledge that can be applied under changing conditions is essential. Collaborative research and firsthand experience are critical to generating such new knowledge.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere