Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
Christian Maurice, Sofia Lidelöw, Björn Gustavsson, Anders Lättström, Daniel Ragnvaldsson, Per Leffler, Lars Lövgren, Solomon Tesfalidet, Jurate Kumpiene
Remediation mainly based on excavation and burial of the contaminated soil is impractical with regard to the large numbers of sites identified as being in need of remediation. Therefore, alternative methods are needed for brownfield remediation. This study was conducted to assess a chemical stabilization procedure of CCA-contaminated soil using iron (Fe)-containing blaster sand (BS) or oxygen-scarfing granulate (OSG). The stabilization technique was assessed with regard to the feasibility of mixing ameliorants at an industrial scale and the efficiency of the stabilization under different redox conditions. The stability was investigated under natural conditions in 1-m3 lysimeters in a field experiment, and the effect of redox conditions was assessed in a laboratory experiment (10 L). The treatments with high additions of ameliorant (8% and 17%) were more successful in both the laboratory and field experiments, even though there was enough Fe on a stochiometric basis even at the lowest addition rates (0.1% and 1%). The particle size of the Fe and the mixing influenced the stabilization efficiency. The development of anaerobic conditions, simulated by water saturation, increases the fraction of arsenic (AsIII) and, consequently, As mobility. The use of high concentrations of OSG under aerobic conditions increased the concentrations of nickel (Ni) and copper (Cu) in the pore water. However, under anaerobic conditions, it decreased the As leaching compared with the untreated soil, and Ni and Cu leaching was not critical. The final destination of the treated soil should govern the amendment choice, that is, an OSG concentration of approximately 10% may be suitable if the soil is to be landfilled under anaerobic conditions. Alternatively, the soil mixed with 1% BS could be kept under aerobic conditions in a landfill cover or in situ at a brownfield site. In addition, the treatment with BS appeared to produce better effects in the long term than treatment with OSG.
Sediments contaminated by various sources of mercury (Hg) were studied at 8 sites in Sweden covering wide ranges of climate, salinity, and sediment types. At all sites, biota (plankton, sediment living organisms, and fish) showed enhanced concentrations of Hg relative to corresponding organisms at nearby reference sites. The key process determining the risk at these sites is the net transformation of inorganic Hg to the highly toxic and bioavailable methylmercury (MeHg). Accordingly, Hg concentrations in Perca fluviatilis were more strongly correlated to MeHg (p < 0.05) than to inorganic Hg concentrations in the sediments. At all sites, except one, concentrations of inorganic Hg (2–55 μg g−1) in sediments were significantly, positively correlated to the concentration of MeHg (4–90 ng g−1). The MeHg/Hg ratio (which is assumed to reflect the net production of MeHg normalized to the Hg concentration) varied widely among sites. The highest MeHg/Hg ratios were encountered in loose-fiber sediments situated in southern freshwaters, and the lowest ratios were found in brackish-water sediments and firm, minerogenic sediments at the northernmost freshwater site. This pattern may be explained by an increased MeHg production by methylating bacteria with increasing temperature, availability of energy-rich organic matter (which is correlated with primary production), and availability of neutral Hg sulfides in the sediment pore waters. These factors therefore need to be considered when the risk associated with Hg-contaminated sediments is assessed.
This paper discusses some recent advances in spectrometric methods and approaches for mercury speciation analysis of environmental samples with focus on isotope dilution techniques for determination of mercury species' concentrations in gaseous samples and reaction rates in soils and sediments. Such analytical data is important inter alia in fundamental research on mercury biogeochemistry and for risk assessments of mercury-contaminated soils and sediments and for designing effective remedial actions. The paper describes how the use of enriched stable isotope tracers in mercury speciation analysis can improve the traceability and accuracy of results, facilitate rational method developments, and be useful for studying biogeochemical processes, i.e. rate of reactions and fluxes, of mercury species. In particular the possibilities to study and correct for unwanted species transformation reactions during sample treatment and to study “natural” transformations of species in environmental samples, or micro- and mesocosm ecosystems, during incubations are highlighted. Important considerations to generate relevant data in isotope tracer experiments as well as reliability and quality assurance of mercury speciation analysis in general are also discussed.
This paper summarizes recent studies on the environmental fate of chloroaromatic compounds in chlorophenol (CP)-contaminated soil and groundwater at Swedish sawmill sites. Relative proportions of CPs, polychlorinated phenoxy phenols (PCPPs), polychlorinated diphenyl ethers (PCDEs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) were determined in preservatives, particulate organic matter (POM), dissolved organic matter (DOM), groundwater, and particles filtered from groundwater. All compound classes were found in the different compartments. The fraction of PCPPs, PCDEs, PCDDs, and PCDFs had increased in the soil samples relative to the proportions in the preservatives. This increase showed correlation with the hydrophobicity, that is, PCDDs had the largest increase. Similar correlation was found between hydrophobicity and the importance of partitioning to POM over DOM. The more water soluble compound group, CP, was found equally distributed between POM and DOM. For PCPPs, PCDEs, PCDDs, and PCDFs, the relative partitioning to POM increased with increased hydrophobicity. Despite the relative partitioning towards POM, compared with DOM, cotransport with DOM and suspended colloidal fractions was found to substantially increase the transport of these compounds in the groundwater samples.
The general European population has a total intake of dioxins and dioxin-like chemicals near the limit recommended by the European Union, making additional exposure above background levels undesirable. For populations living near dioxin-contaminated sites, additional exposure may occur by intake of locally produced food, inhalation of particles, dermal contact with soils, or other exposure pathways. Risk assessment tools are required to estimate risks associated with contaminated sites and to set priorities for site remediation. Here, we review several multimedia models that can be applied as tools to support risk assessment. We then present a strategy to select, apply, evaluate, and adapt a model to address a specific situation. The case study we consider is a risk assessment of generic background dioxin exposure in Sweden, and we compare the predictions with environmental observations and exposure data from Sweden. Arguments are presented for selecting the CalTOX model for this case study. We demonstrate the application, evaluation, and adaptation of the model and discuss the requirements for extending the analysis to conduct risk assessment for subpopulations living near dioxin-contaminated sites.
This review provides a summary of methods for treating soils contaminated with polychlorinated aromatic compounds, especially polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Unlike many other soil pollutants, PCDD/Fs bind tightly to the soil, which severely reduces the efficiency of most aqueous treatment procedures and leaves few realistic alternatives besides the traditional containment techniques (landfill, solidification/stabilization, and in situ vitrification). Incineration has long been, and still is, the most efficient destruction technique, with a removal efficiency of >99.9999%. However, supercritical water oxidation, base-catalyzed decomposition, steam distillation, and various extraction techniques, such as solvent and liquefied gas and subcritical water extraction, may provide removal efficiencies of >95%. Many of the alternative techniques are expected to be cheaper than incineration and may therefore be attractive for moderately polluted soils. However, some of them are at an early stage of development and need to be further tested before their true potential can be assessed.
In this paper we show that oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are important cocontaminants that should be taken into account during risk assessment and remediation of sites with high levels of PAHs. The presented data, which have been collected both from our own research and the published literature, demonstrate that oxy-PAHs are abundant but neglected contaminants at these sites. The oxy-PAHs show relatively high persistency and because they are formed through transformation of PAHs, their concentrations in the environment may even increase as the sites are remediated by methods that promote PAH degradation. Furthermore, we show that oxy-PAHs are toxic to both humans and the environment, although the toxicity seems to be manifested through other effects than those known to be important for polycyclic aromatic compounds in general, that is, mutagenicity and carcinogenicity. Finally, we present data that support the hypothesis that oxy-PAHs are more mobile in the environment than PAHs, due to their polarity, and thus have a higher tendency to spread from contaminated sites via surface water and groundwater. We believe that oxy-PAHs should be included in monitoring programs at PAH-contaminated sites, even if a number of other toxicologically relevant compounds that may also be present, such as nitro-PAHs and azaarenes, are not monitored. This is because oxy-PAH levels are difficult to predict from the PAH levels, because their environmental behavior differs substantially from that of PAHs, and oxy-PAHs may be formed as PAHs are degraded.
Site investigations of contaminated land are associated with high costs. From a societal perspective, just enough economic resources should be spent on investigations so that society's limited resources can be used optimally. The solution is to design investigation programs that are cost effective, which can be performed using value of information analysis (VOIA). The principle of VOIA is to compare the benefit at the present state of knowledge with the benefit that is expected after an investigation has been performed. A framework for VOIA of site investigations is presented based on Bayesian risk-cost-benefit decision analysis. The result is an estimate of the value of an investigation program and, for specific problems, the optimal number of samples. The main strength of the methodology is that it promotes clear thinking and compels the decision maker to reflect on issues that otherwise would be ignored. The main weakness is the complexity of VOIA models.
Rapid screening methods can improve the cost effectiveness, throughput, and quality of risk assessments of contaminated sites. In the present case study, the objective was to evaluate a combination of pressurized liquid extraction and 2 in vitro bioassays for the hazard assessment of surface soil sampled from 46 points across a pyrotechnical industrial site. Pressurized liquid extraction was used to rapidly produce soil-water extracts compatible with 2 high-capacity bioassays. Hazard assessment using combined toxicological and chemical screening revealed zones with relatively high potential risks of metal pollution. Multivariate data analysis provided indications that significant inhibition in the bioassays was correlated with levels of metals in the extracts, suggesting an elevated toxic potential from certain metals. Low pH and high concentrations of dissolved organic carbon were associated with increased cytotoxicity of extracts, indicating that these factors influence metal bioavailability. The cytotoxicity observed was more strongly correlated to metal concentrations in the extracts than in the soil, suggesting that measurements of total metal concentrations in soils do not provide good indications of the soil's potential toxicity.
Christian Maurice, Björn Gustavsson, Daniel Ragnvaldsson, Björn Rydvall, Rune Berglind, Peter Haglund, Torbjörn Johnson, Per Leffler, Karin Luthbom, Patrik von Heijne
Investigations of polluted brownfield sites and sample analyses are expensive, and the resulting data are often of poor quality. Efforts are needed, therefore, to improve the methods used in investigations of brownfield sites to both reduce costs and improve the quality of the results. One approach that could be useful for both of these purposes is the triad strategy, developed by the US Environmental Protection Agency, in which managing uncertainty is a central feature. In the investigations reported here, a field study was conducted to identify possible ways in which uncertainties could be managed in practice. One example considered involves optimizing the uncertainty by adjusting the sizes of samples and the efforts expended in analytical work according to the specific aims of the project. In addition, the potential utility of several toxicity assessment methods for screening sites was evaluated. As well as presenting the results of these assessments, in this contribution we discuss ways in which a flexible work strategy and screening methods inspired of the triad philosophy could be incorporated into the Swedish approach to remediate brownfield sites. A tiered approach taking advantage of field and screening methods is proposed to assess brownfield sites focusing on the response and acceptable uncertainty that are required for the task.
Contaminant transport is generally considered to be a key factor when assessing and classifying the environmental risk of polluted areas. In the study presented here, a steady-state approach was applied to obtain estimates of the transit time and concentration of the pesticide metabolite BAM (2,6-dichlorobenzoamide) at a site where it is contaminating a municipal drinking water supply. A Monte Carlo simulation technique was used to quantify the uncertainty of the results and to evaluate the sensitivity of the used parameters. The adopted approach yielded an estimated median transit time of 10 y for the BAM transport from the polluted site to the water supply. Soil organic carbon content in the unsaturated zone and the hydraulic conductivity in the saturated zone explained 44% and 23% of the uncertainty in the transit time estimate, respectively. The sensitivity analysis showed that the dilution factor due to regional groundwater flow and the soil organic carbon content at the polluted site explained 53% and 31% of the uncertainty of concentration estimates, respectively. In conclusion, the adopted steady-state approach can be used to obtain reliable first estimates of transit time and concentration, but to improve concentration predictions of degrading contaminants, a dynamic model is probably required.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere