BioOne.org will be down briefly for maintenance on 14 May 2025 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
Registered users receive a variety of benefits including the ability to customize email alerts, create favorite journals list, and save searches.
Please note that a BioOne web account does not automatically grant access to full-text content. An institutional or society member subscription is required to view non-Open Access content.
Contact helpdesk@bioone.org with any questions.
This paper evaluates the impact of protected areas on land-cover clearing, using a metadata analysis of information on 49 locations from 22 countries. Protected areas had significantly lower rates of clearing in comparison to their surroundings. In addition, protected areas had also significantly lowered rates of clearing within their boundary following initiation of protection. Thus, protected areas do appear to be effective at limiting overall land-cover clearing. There was some variation in the rates of clearing across regions, where most protected areas from North America and Europe showed positive rates of land-cover change, while protected areas from Asia had the highest rates of land-cover clearing. While most protected areas from North America and Europe involved a relatively smaller number of actors, a greater number of actors and drivers of clearing was implicated in protected areas from Asia, Africa, and Latin America, indicating the increased difficulties faced by park management in these regions. In contrast, country income levels and the International Union for the Conservation of Nature and Natural Resources category of protection did not appear to impact the likelihood of land-cover clearing in protected areas.
Minimal-impact interpretation is widely used to reduce the ecological impacts of visitors to protected areas. We tested whether verbal appeals and/or role-model demonstrations of minimal-impact behavior by a trained guide reduced noise, litter, and trampling impacts on hiking trails in a subtropical rainforest. Interpretation did reduce impacts significantly. Different interpretive techniques were more effective for different impacts. The experimental groups were mature, well-educated professionals; interpretation may differ in effectiveness for different visitors. Interpretation by skilled guides can indeed reduce visitor impacts in protected areas, especially if role modeling is combined with verbal appeals.
The Panama Canal is near its vessel size and tonnage handling capacity, and Panamanians have decided to expand it. The expansion of the Canal may consider the historical long-lasting impacts on marine coastal habitats particularly on sensitive coral reefs. These potential impacts were discussed during the national referendum as were other equally important issues, such as its effects on forests, watersheds, and water supply. Coral growth rates provide a direct measure of coral fitness and past environmental conditions comparable to analyses of tree rings. We examined stable isotopes, metal geochemical tracers, and growth rates on a century-long (1880–1989) chronology based on 77 cores of the dominant reef-building coral Siderastrea siderea collected near the Caribbean entrance to the canal. Our results showed a gradual decline in coral growth unrelated to changes in sea surface temperature but linked to runoff and sedimentation to coastal areas resulting from the construction and operation of the Panama Canal.
Conservation of the marine environment mainly focuses on threatened elements and more precisely on vulnerable and endangered species like birds and mammals. When dealing with the conservation of marine habitats, the scientific community is mainly interested in hot spots of diversity, like seagrass beds in Europe, or hot spots of endemism, like coral reefs in tropical areas. Nevertheless, using the example of a common and widespread marine invertebrate, the sandmason worm (Lanice conchilega, Polychaeta, Terebellidae), we show that vulnerability and rarity are not the only criteria to take into account in order to select the best natural element for conservation. This species can form dense beds that increase biodiversity, are attractive feeding grounds for birds and fishes, and have a high socioeconomic value. In consequence, they have a high functional value that should be considered as an important conservation stake. Through the example of the Chausey archipelago and the Bay of the Mont Saint-Michel (France), we propose a synthetic interdisciplinary approach to evaluate the conservation needs of these beds. The issue is even more pressing when one considers that these natural elements and many similar ones still do not benefit from any legal protection in Europe despite their high heritage value.
Aerial surveys of Caspian seals on the winter ice field in Kazakhstan territorial waters were carried out in February 2005 and 2006 to assess the annual pup production for the species and natural predation on newborn pups. Estimated pup production was 21 063 in 2005 and 16 905 in 2006 (including an estimated figure for pups born in Russian territory in each year). The breeding population size of approximately 20 000 females is much less than published estimates from the late 1980s. Eagles were the principal natural predators of pups. Commercial icebreaker routes passed through areas of dense pup concentrations in 2006, although not in 2005. Our findings have important implications for the development of conservation strategies for the species. Natural mortality, loss to predators, and, more important, the current hunting quota substantially exceed the recruitment of the Caspian seal population. Anthropogenic sources of mortality should be managed to avoid further declines in the species.
The organisms living on and in the sea floor, the benthos, represent an important ecological group. Although some (shellfish) have an economic value, most do not, and so little long-term data are available. We have identified three sources of historic benthic data for the North Sea, a regional sea that has been subjected to multiple human impacts for at least several hundred years. Each dataset has its limitations, but by their use together some issues emerge. Wider community shifts were observed in the shorter term and a number of extirpations at the scale of the North Sea were seen over longer time scales. The extirpated taxa share a number of characteristics consistent with an effect of fisheries such as fragile morphology. We must concentrate now on furthering our understanding of the ecological significance of shifts in dominance of particular functional units and protecting those habitats and species most vulnerable to fisheries-driven extirpation.
In the 20th century, much research was done on desertification. Desertification developed into a complex and vague construct that means land degradation under specific conditions. Projects focusing on land degradation in semiarid East Africa have met with limited success because farmers prioritize drought as the major productivity-reducing problem. Yet studies on long-term rainfall trends have not confirmed that droughts are more frequent. In this article, we combine drought and land degradation effects into an Agricultural Drought Framework, which departs from the farmers' prioritization of drought and accommodates scientists' concern for land degradation. It includes meteorological drought, soil water drought, and soil nutrient drought. The framework increases insight into how different land degradation processes influence the vulnerability of land and farmers to drought. A focus on increased rainwater use efficiency will address both problems of land degradation and drought, thereby improving productivity and food security in semiarid East Africa.
This article analyzes the relationship between the configuration and spatial reorganization of land-use and land-cover in the Pujal-Coy project area, Huasteca Potosina region, eastern San Luis Potosí, Mexico, as well as the relationship between these changes and the environmental conditions prevailing in the area. Land-use and land-cover changes were determined through the analysis and interpretation of satellite images from different dates. The changes identified in the different study periods were correlated with the prevailing physical factors. The results show that the spatial configuration of farming activities, initially induced by the implementation of a regional development project, is highly correlated to the presence of limiting factors such as soil type, slope, and climate. Particularly, the former represents the element that has led to the establishment of the current distribution pattern of farming activities.
This article is only available to subscribers. It is not available for individual sale.
Access to the requested content is limited to institutions that have
purchased or subscribe to this BioOne eBook Collection. You are receiving
this notice because your organization may not have this eBook access.*
*Shibboleth/Open Athens users-please
sign in
to access your institution's subscriptions.
Additional information about institution subscriptions can be foundhere